THE KEW OBSERVAT0RY, RICHMOND, SURREY.

1886.

REPORT
 OF THE

 K E W C OMMITTEE

 K E W C OMMITTEE
 FOR THE

Year ending October 31, 1886,

WITH APPENDICES CONTAINING RESULTS OF MAGNETICAL, METEOROLOGICAL, AND SOLAR OBSERVATIONS MADE AT THE OBSERVATORY.
[From the Proceedings of the Royal Society, 1886.]

> LONDON:

HARRISON AND SONS, ST. MARTIN'S LANE,
 1886.

Report of the Kew Committee for the Year ending

 October 31, 1886.The operations of The Kew Observatory, in the Old Deer Park, Richmond, Surrey, are controlled by the Kew Committee, which is constituted as follows :

Mr. Warren de la Rue, Chairman.
Captain W. de W. Abney, R.E. The Earl of Rosse.
Prof. W. G. Adams.
Prof. G. C. Foster.
Mr. F. Galton.
Admiral Sir G. H. Richards, K.C.B.

Mr. R. H. Scott. Lieut.-General W. J. Smythe. Lieut.-Gen. R. Strachey, C.S.I. Lieut.-General J. T. Walker, C.B.

The Committee regret to announce the death, in December last, of one of their members, Captain Sir F. Evans, K.C.B., formerly Hydrographer. He had held a seat upon the Committee since 1874, and was a frequent attendant at their meetings, rendering most valuable assistance in all questions relating to terrestrial magnetism or navigation brought forward for consideration.

The work at the Observatory may be considered under the following heads:-

1st. Magnetic observations.
2nd. Meteorological observations.
3rd. Solar observations.
4th. Experimental, in connexion with any of the above departments.
5 th. Verification of instruments.
6th. Rating of Watches and Marine Chronometers.
7th. Miscellaneous.

I. Magnetic Observations.

The Magnetographs have been in constant operation during the year, and in accordance with the usual practice, determinations of the scale values of all the instruments were made early in January.

The Vertical Force Balance Magnet was found to have a scale value of for 1 inch $\delta V=0.0296$, and therefore appeared wanting in sensitiveness, it was accordingly re-adjusted and brought up to the proper pitch of delicacy.

The values of the ordinates of the different photographic curves de.ermined then were as follows :-

Declination: 1 inch $=0^{\circ} 22^{\prime} \cdot 04 . \quad 1 \mathrm{~cm} .=0^{\circ} 8^{\prime} \cdot 7$.
Bifilar, January 1.1, 1886, for 1 inch $\delta \mathrm{H}=0.0268$ foot grain unit.

$$
\# 1 \mathrm{~cm} .,=0 \cdot 0005 \text { C.G.S. unit. }
$$

Balance, January 19, 1886 „, 1 inch $\delta V=0.0274$ foot grain unit.
, $1 \mathrm{~cm} .,=0.0005$ C.G.S. unit.
The chief days on which notable magnetic disturbance was recorded were as follows :-January 9, March 30, July 27, and October 7-11.

The magnetic instruments have been studied, and a knowledge of their manipulation obtained by Professor L. M. Rassell, Mr. E. Kitto, and Mr. C. Chambers, jun.

Professors Rücker and Thorpe visited the Observatory in April, and made several sets of observations with the instruments which they have employed in their magnetic survey of the British Isles, prior to their commencing operations on the southern section which have occupied them during the past summer.

At the request of the Royal Cornwall Polytechnic Society, a set of magnetographs on an improved model has been constructed for the Committee by Mr. Munro, which, after a lengthened trial in the Verification House, were forwarded to Falmouth, and erected at the New Observatory, under the supervision of Mr. T. W. Baker. The cost has been defrayed by a grant from the Royal Society's Government Fund.

At the suggestion of General Sir J. H. Lefroy, the Committee have caused a plate to be engraved on which sectional lines are laid down on the scale adopted by the International Polar Conference, for plotting all magnetic curves on a uniform system. Impressions from this plate will be kept at the Observatory, and supplied at cost price to persons desirous of making use of such forms.

Information on matters relating to terrestrial magnetism and various data, have been supplied to Professor W. G. Adams, Dr. Atkinson, General Sir J. H. Lefroy, Professor B. Stewart, M. Moureau, Captain Schück, and others.

The monthly observations with the absolute instruments have been made as usual, and the results are given in the tables forming Appendix I of this Report.

The following is a summary of the number of magnetic observations made during the year:-
Determinations of Horizontal Intensity 30
Inclination 155Absolute Declination.36

The diurnal range of the Declination having become a somewhat interesting feature in magnetic reductions, an additional table, giving the values for the summer and winter seasons and for the whole year, as determined from selected curves by the graphic method,* has been inserted in the Appendix.

II. Meteorological Observations.

The several self-recording instruments for the continuous registration respectively of atmospheric pressure, temperature, and humidity, wind (direction and velocity), bright sunshine, and rain, have been maintained in regular operation throughout the year.
The only alterations made in the above instruments have been the following: a screen of blue glass has been interposed in the barograph between the barometer tube and the light, with the result of improving the definition of the photographic curve, and a Stonyhurst lifter has been fitted to the Beckley rain-gauge, causing the pencil to return to its original position after depression more rapidly than it did previously.
The standard eye observations for the control of the automatic records have been duly registered during the year, together with the daily observations in connexion with the U.S. Signal Service synchronons system. A summary of these observations is given in Appendix II.
The tabulation of the meteorological traces has been regularly carried on, and copies of these, as well as of the eye observations, with notes of weather, cloud, and sunshine have been transmitted to the Meteorological Office.

The terrestrial radiation thermometer (grass minimum) was found broken on July 11, and replaced by a new instrument on July 21.
The following is a summary of the number of meteorological observations made during the past year:-
Readings of standard barometer 1725
dry and wet thermometers 3450
, maximum and minimum thermo- meters 730
radiation thermometers 1480
rain gauges 730
Cloud and weather observations 1877
Measurements of barograph curves 8751

* See paper by Mr. Whipple in the "Quart. Jour. Roy. Met. Soc.," vol. ix, p. 45.

| Measurements of dry bulb thermograph curves. . | 9473 | |
| :---: | :--- | ---: | ---: |
| $"$ | wet bulb thermograph curves. . | 8681 |
| $"$ | wind (direction and velocity). | 17515 |
| $"$ | rainfall curves | 740 |
| $"$ | sunshine traces | 2113 |

In compliance with the usual request made by the Meteorological Council to the Committee, Mr. Whipple visited the Observatories at Aberdeen, Glasgow, and Stonyhurst, and the anemograph at Swaubister. He also superintended the erection of new instruments at North Shields and Fleetwood.

Mr. Baker has visited the Valencia and Falmonth Observatories for the purpose of inspection.

With the sanction of the Meteorological Council, weekly abstracts of the Meteorological results have been regularly forwarded to, and published by "The Times" and "The Torquay Directory." Data have also been supplied to the Council of the Royal Meteorological Society, the editor of "Symons's Monthly Meteorological Magazine," the Secretary of the Institute of Mining Engineers, Messrs. B. Latham, Gwilliam, Rowland, and others. The cost of these abstracts is borne by the recipients.

Electrograph.-Acting upon the recommendation of the Kew Committee the Meteorological Council have purchased a new quadrant electrometer, constructed on Mr. de la Rue's principle, with Professor Clifton's improvements, together with a chloride of silver battery of 60 cells, for the purpose of maintaining the potential of the quadrants at a certain point.

By the kindness of the Chairman of the Committee, experiments were made at his laboratory in Portland Place by means of which the scale value of the instrument was determined before it was conveyed to the Observatory, and erected in the place of the Thomson instrument formerly employed.

No change has been made in the recording apparatus attached to it. The instrument has been working for the past month in a satisfactory manner.

In accordance with a request made by the Meteorological Council, and at their expense, the electrograms for the two years 1882 and 1883 have been tabulated in absolute values.

III. Solar Observations.

The sketches of Sun-spots, as seen projected on the photoheliograph screen, have been made on 169 days, in order to continue Schwabe's enumeration, the results being given in Appendix II, Table IV.

Transit Observations.-301 observatious of solar and 76 of sidereal transits have been taken, for the purpose of keeping correct local time
at the Observatory, and the clocks and chronometers have also been compared daily. The Observatory Chronometers Arnold 86 and Parkinson and Frodsham 2408, have been cleaned and re-adjusted, and the mean-time clocks, Shelton K. O., and Shelton 35, examined and re-adjusted by Dent.
The following clocks, French, Dent 2011, Shelton K. O., and the chronometers, Molyneux No. 2125 and Breguet No. 3140, are kept carefully rated as time-keepers at the Observatory.
The mean-time clock, Shelton 35, after cleaning, \&c., was bolted to the wall of the chronometer-room for use in daily comparisons with the chronometers on trial.
In order to facilitate the inter-comparison of the clocks, the ehronometer "Parkinson" has been specially fitted up as a "hack" instrument.
At the request of the Council of the Royal Meteorological Society, certain experiments were made with the view of investigating Professor W. K. Zenger's solar phenomena and an examination was alşo made of the Kew solar photographs. The results obtained were however of a negative character only. A note of them has been published in the "Quarterly Journal Roy. Met. Soc.,", vol. xii, p. 215.
A comparative trial extending over five months was made of Professor McLeod's sunshine recorder (see " Proc. Phys. Soc.," vol. vi, p. 216), and the Stokes' instrument which proved the results given by the two instruments to be practically identical.

IV. Experimental Work.

Photo-nephograph.-The report on last year's work in cloud photography was duly submitted to the Meteorological Council, and placed by them in the hands of Professor Stokes for consideration.

Professor Stokes having investigated the methods employed at the Observatory, devised a new graphic process for determining the cloud heights and motions in a much simpler manner than by the use of mathematical formulæ only. He invented a special apparatus called a projector, which has been constructed by C. Baker, and is now being utilized in the reduction of the pictures taken during the past season. These have amounted to 112 cloud negatives, and were obtained in 15 days.

For convenience of dealing with the cloud pictures in the projection apparatus with greater facility, the negatives have all been printed off on paper prepared by the cyanotype process.

Certain minor additions were made to the cameras, and accessory apparatus, which have tended to facilitate their working, and their action has been fairly satisfactory ever since. There is, however, still an occasional failure due to uncertainty of the duration of the
time of exposure of the twin cameras, although this is apparently instantaneous.

Solar Radiation Thermometers.-The experiments with these thermometers have been continued during the past summer months, and at times as many as 8 instruments have been under observation.

It having appeared that during the winter the vacua in certain of the instruments had deteriorated either by leakage or evolution of gas from the lamp-black coating of the bulbs, experiments were made in the Chairman's laboratory which proved that such was the case. New thermometers were made and enclosed in jackets not provided with platinum electrodes; the bulbs were also made of black glass, having the stems covered with black enamel. These, after careful exhaustion, were placed under observation, but did not register temperatures higher than had been previously observed.

Advantage was taken of an offer kindly made by Professor Thorpe to make solar radiation observations on his recent Eclipse Expedition to Grenada, and two of the instruments were lent to him. He has now returned them to the Observatory, together with copies of the readings he was able to procure on the occasion.

Electrical Anemograph.-This instrument, after a lengthened trial in the Experimental House and the execution of certain minor alterations by Mr. Kempe, has been dismounted and forwarded to the Valencia Observatory by instructions of the Meteorological Council. The external parts were previously put into thorough repair by Mr. Munro, in order to fit the anemograph for the rough weather to which it will be exposed when erected on a hill almost overlooking the Atlantic.

Dines' Anemometer.-Trials have been made of two anemometers constructed on a new principle by Mr. W. H. Dines, B.A. Owing, however, to structural defects, both instruments broke down before any final results were obtained, and were returned to the maker for repair.

Glycerine Barometer.-This instrument, having very considerably deteriorated by age, was dismounted by Mr. Jordan in June, and after thorough cleaning and repair by Mr. J. Steward, was again erected and refilled with new fluid.

Pendulum Experiments.-At the request of General Walker, certain experiments were made with the view of ascertaining the stability of the Experimental House as a site for pendulum operations. These having proved that building unsuitable, a wooden erection $13 \mathrm{ft} . \times$ $9 \mathrm{ft} . \times 8 \mathrm{ft}$. has been constructed, at the desire of the Pendulum Committee of the Royal Society, in the lower South Hall of the Observatory, on the spot occupied in 1873 by C\&ptain Heaviside, when experimenting with the Russian pendulum. (See Report for 1873.)

In this room it is the intention to erect the Indian Pendulum Appa-
ratas recently yeturned by Professor Peirce from the United States, and swing the pendulums so as to obtain a differential connexion with recent swings in New York. Subsequently, it is intended to convey the whole to the Royal Observatory at Greenwich, where other series of observations and experiments will be conducted with a view to connecting Greenwich with Kew.
At the request of the Meteorological Council, various experiments were tried with the view of selecting a suitable paper for use with the Beckley anemographs, and also of remedying certain defects found attendant on the employment of gelatinised photographic curves in processes of mechanical reduction in the Meteorological Office.

V. Verification of Instruments.

The following magnetic instruments have been verified, and their constants determined:-

1 Unifilar Magnetometer and an Inclinometer for the Falmouth Observatory.

Two Inclinometers have been purchased on commission for the Bureau of Navigation, Washington, 1 each also for the Ekaterinbarg Observatory and the Lighthouse Board, Helsingfors. 2 Dip Needles have been procured and tested for the Mauritius Observatory; also l pair for the Lisbon Observatory; 7 Thomson's patent compasses with 7 vertical force instruments have also been examined for the Imperial Japanese Navy.
1 Unifilar, 2 Compasses, and 2 Inclinometers have been tested for opticians, and 2 Unifilars are at present undergoing verification.
The total number of other instruments compared in the past year was as follows :-
Barometers, Standard. 31
Marine and Station 92
Aneroids 124
Total. 247
Thermometers, ordinary Meteorological 1320
Standard and Chemical. 210
" Mountain 45
Clinical 9054
" Avitreous 816
" Solar radiation 45
Total. 11490
Hydrometers 512
Anemometers. 15
Rain Gauges 6
Sextants. 139
Index and Horizon Glasses, unmounted 170
Dark Glasses, unmounted 597
Theodolites 9

Besides these, 32 Deep-sea Thermometers have been tested, 16 of which were subjected, in the hydraulic press, without injury, to pressures exceeding two tons on the square inch. 27 Thermometers have been compared at the freezing-point of mercury, making a total of 11549 for the year.

Daplicate copies of corrections have been supplied in 84 cases.
The number of instruments rejected on account of excessive error, or which from other causes did not record with sufficient accuracy, was as follows :-

7 Standard Thermometers have also been calibrated, and supplied to societies and individuals during the year.

1 Redier Barograph, 1 Richard Hygrometer, 1 Air Meter, 2 Telescopes, \&c., were also examined.

There are at present in the Observatory undergoing verification, 43 Barometers, 904 Thermometers, 2 Hydrometers, and 27 Sextants.

A question having arisen as to the true interpretation of the tables of Specific Gravity used in connexion with the verification of instruments of the hydrometer class, a Sub-Committee has been appointed to cousider the maiter and authorize the adoption by the Observatory of certain definite rules.

VI. Ratina of Watches.

The arrangements for rating watches mentioned in previous Reports have been continned during the year with great success, and up to the present 834 watches have been examined, of which 16 were submitted by the owners, and 818 by the manufacturers or dealers.

490 watches were received as contrasted with 302 received during the corresponding period of last year. They were entered for testing in the following classes:-

For class A, 436 ; class B, 36 ; and class C, 18. Of these 148 failed to gain any certificate; 16 passed in C, 102 in B, 224 in A, and 8 obtained the highest possible form of certificate, the class A especially good.

All the watches which obtained Class A certificates had marks assigned to them, indicating the degree of relative efficiency they exhibited daring their trial, according to the following scale :-
The number of marks awarded to a watch that only just succeeds in obtaining an A certificate is 0 , while that awarded to an absolutely perfect watch would be 100, made up as follows:-40 for a complete absence of variation of daily rate, 40 for absolute freedom from change of rate with change of position, and 20 for perfect compensation for effects of temperature.
In Appendix III will be found a statement giving the results of trial of the 20 watches which obtained the highest numbers of marks during the year, the first position being again attained-with 86.7 marks-by the maker who occupied it-with $86 \cdot 1$ marks-last year.

The number of watches obtaining a high figure in the marks list has, however, much increased.
The following table will indicate the natare of the trials to which ordinary certificates refer :-

Position of watch during test.	For certificate of Class		
	A.	B.	C.
Vertical, with pendant up.........	10 days	14 days	8 days
" " " right........		-	-
Horizontal, "with dial up	5 \%	14- days	8 days
", ", down	5 "	-	-
" at temp. $40^{\circ} \mathrm{F} . \cdots \ldots \ldots$	$5 \quad \text { " }$	1 day	-
	5	$\begin{array}{ll} 1 & " \\ 1 & " \end{array}$	-
Total duration of test.	45 days	31 days	16 days

Owing to the inconvenience and delay attendant on the employment of one safe for both hot and cold tests, a second was procured, and has been fitted up as a refrigerator, thereby enabling two sets of watch trials to proceed simultaneously, and more constant temperatures in both heat and cold to be sustained for the necessary periods.

Special attention has been given to the examination of pocket chronographs, in accordance with the request of the Cyclists' Union.

Manufacturers have also been advised of certain mechanical defects in the action of the chronograph work, and latterly an improvement has taken place in respect of this.

Early in the year a communication was received from the President
of the Section d'Horlogerie de la Société des Arts à Genève, asking for full particulars of the system of rating at this Observatory. These were forwarded to him, and in acknowledging receipt of the same he expressed the gratification of his Council at the degree of accuracy obtained in the Kew trials during the year.

Rating of Chronometers.-Application having been made to the Committee to extend their system of watch rating to marine chronometers, arrangements were carried out for effecting this. A chronometer oven formerly constructed for the Testing Office of the Board of Trade, being unemployed, was obtained on loan from the Meteorological Council, in whose possession it was, and erected with the necessary gas-fittings in the Thermograph-room of the Observatory.

A scheme for rating and certifying was drawn up, of which the following is a brief abstract.

The trial occupies 35 days, divided into 5 periods of 6 days each, and 5 intermediate days, namely, 1 day at the commencement of each period of test:-

1st period.		Chronometer at temperature of $55^{\circ} \mathrm{F}$. or $13^{\circ} \mathrm{C}$.				
2nd	"	"		70°		21
3 rd	"	"	"	85°		29
4th	"	"	"	70°		21
5th	"	"	"	55°		13

Certificates are granted to chronometers which have undergone 35 days' test as specified above, and whose performance is such that:-

1. The mean of the differences in each stage of the examination, between (a) the average daily rate during that period, and (b) the several daily rates, does not exceed one second in any one of the stages.
2. The mean daily rate has not been affected by change of temperature more than one-sixth of a second per $1^{\circ} \mathrm{F}$., which is about a quarter of a second per $1^{\circ} \mathrm{C}$.
3. The mean daily rate has not exceeded five seconds in any stage of the test.

The trials were commenced in August, and up to present date seventeen ordinary marine and one sidereal chronometer have been rated.

The Astronomer Royal having on enquiry certified as to the excellent working of Kullberg's temperature regulator in the chronometer oven at the Royal Observatory, Greenwich, the inventor has been instructed to fit a similar one to the Kew testing case.

A Richard Thermograph has also been procured, and is arranged to work in the case with the chronometers, so as to afford a continuous
record of the temperatures which they have experienced during the whole of their trial.
The range of temperature from 55° to $85^{\circ} \mathrm{F}$., to which the marine chronometers are submitted, has been decided upon after careful consideration, as being amply sufficient for determining the behaviour of chronometers under conditions to which they are usually exposed at sea, and no objections have yet been received from makers or others to the adoption of the above range.

VII. Miscellaneous.

Photographic Paper, $\& \cdot c$. -This has been supplied to ${ }^{-}$the Observatories at Batavia, Coimbra, Falmouth, Glasgow, Lisbon, Mauritius, 0xford, Stonyhurst, St. Petersburg, and Toronto, and to the Meteorological Office. Blank forms have also been supplied to various Observatories and individuals.
At the request of Senhor Capello, of the Lisbon Observatory, an astronomical clock was procured and shipped to the Loanda Observatory, for use during the recent solar eclipse.

Two barograph tabulators, photographic appliances, and various other instruments have been procured, verified, and forwarded to the Observatories at Hong Kong and Mauritius.

The Observatory has been presented by the Rev. John Rigaud, B.D., Fellow of Magdalen College, Oxford, with a bust of his father, Stephen Peter Rigaud, Esq., M.A., F.R.S., Savilian Professor of Astronomy and Radcliffe Observer, who formerly assisted his uncle, the Rev. S. Demainbray, in carrying on the Observatory.

Exhibitions, fc.-At the request of the Council of the Royal Meteorological Society a number of old instruments were exhibited at the Exhibition held by the Society in the rooms of the Institation of Civil Engineers in March, and devoted this year to barometers.

Four sets of photographs illustrative cf the various processes in use at different periods at the Observatory have been contributed to the Photographic Exhibition, held in the Corporation Galleries of Art at Glasgow.

Library.-In July the Superintendent received a letter from the Secretary of the Royal Society offering a number of duplicate volumes about to be removed from the Library at Burlington House, and forwarding a catalogue.

A selection was made of those suitable for the Observatory Library, and sixteen volumes were accordingly sent down to Kew.

Presents of publications were received during the year from-
34 Scientific Societies and Institutions of Great Britain and Ireland, and
92 Foreign and Colonial Scientific Establishments, as well as numerous private individuals.

Magnetic Reductions.-At the request of Professor Balfour Stewart, the Superintendent prepared and submitted to the Committee of the British Association on the Reduction of Magnetic Observations, a report on the comparison between Wild's, Sabine's, and the Greenwich methods of determining the solar diurnal range of the declination.

Workshop.-The machine tools procured for the use of the Kew Observatory by grants from the Government Grant Fund or the Donation Fund have been kept in thorough order.

House, Grounds, and Footpath.-These have all been kept in order during the year.

Her Majesty's Commissioners of Woods and Forests have kindly complied with the request of the President and Council of the Royal Society that the Observatory Staff should have a free passage at all hours through the yard tenanted by the lessee of the Old Deer Park, and accordingly an iron turnstile has been erected at the expense of the Committee at the entrance gate to the Park.

The necessary external repairs and painting of the building have been carried out by Her Majesty's Commissioners of Works as usual.

Owing to the increase of work now undertaken by the Observatory Staff it has become necessary to consider means of increasing the available accommodation, and of providing more space by addition either to the Observatory building itself or to one of the outbuildings.

Plans for both schemes have been submitted to the Committee, together with estimates of the approximate cost.

Personal Establishment.

The staff employed is as follows :-
G. M. Whipple, B.Sc., Superintendent.
T. W. Baker, Chief Assistant and Magnetic Observer.
H. McLaughlin, Librarian and Accountant.
E. G. Constable, Solar Observations and Rating.
W. Hugo,
$\left.\begin{array}{l}\text { J. Foster, } \\ \text { T. Gunter, }\end{array}\right\}$ Verification Department.
T. Gunter,
W. Boxall,
E. Dagwell.
H. A. Widdowson.
F. Oliver.
W. C. Gough.
E. Redding.
M. Baker, Messenger and Care-taker.
Abstract.

APPENDIX I.

Mugnetic Observations made at the Kew Observatory, Lat. $51^{\circ} 28^{\prime} 6^{\prime \prime} N$. Long. $0^{\mathrm{h}} 1^{\mathrm{m}} 15^{\mathrm{s}} 1 \mathrm{~W}$., for the year October 1885 to September 1886.
The observations of Deflection and Vibration given in the annexed Tables were all made with the Collimator Magnet marked K C 1, and the Kew 9 -inch Unifilar Magnetometer by Jones.

The Declination observations have also been made with the same Magnetometer, Collimator Magnets 101 B and N E being employed for the purpose.

The Dip observations were made with Dip-circle Barrow No. 33, the needles 1 and 2 only being used; these are $3 \frac{1}{2}$ inches in length.

The results of the observations of Deflection and Vibration give the values of the Horizontal Force, which, being combined with the Dip observations, furnish the Vertical and Total Forces.

These are expressed in both English and metrical scales-the unit in the first being one foot, one second of mean solar time, and one grain; and in the other one millimetre, one second of time, and one milligramme, the factor for reducing the English to metric values being 0.46108 .

By request, the corresponding values in C.G.S. measure are also given.
The value of $\log \pi^{2} \mathrm{~K}$ employed in the reduction is $1 \cdot 64365$ at temperature $60^{n} \mathrm{~F}$.

The induction-coefficient μ is 0.000194 .
The correction of the magnetic power for temperature t_{0} to au adopted standard temperature of $35^{\circ} \mathrm{F}$. is

$$
0 \cdot 0001194\left(t_{0}-35\right)+0 \cdot 000,000,213\left(t_{0}-35\right)^{2}
$$

The true distances between the centres of the deflecting and deflected magnets, when the former is placed at the divisions of the deflectionbar marked 1.0 foot and 1.3 feet, are 1.000075 feet and 1.300097 feet respectively.

The times of vibration given in the Table are each derived from the mean of 12 or 14 observations of the time occupied by the magnet in making 100 vibrations, corrections being applied for the torsion-force of the suspension-thread subsequently.

No corrections have been made for rate of chronometer or arc of vibration, these being always very small.

The value of the constant P , employed in the formula of reduction $\frac{m}{\mathrm{X}}=\frac{m^{\prime}}{\mathrm{X}^{\prime}}\left(1-\frac{\mathrm{P}}{r_{0}{ }^{2}}\right)$, is -0.00148 .

In each observation of absolute Declination the instrumental readings have been referred to marks made upon the stone obelisk erected 1,050 feet north of the Observatory as a meridian mark, the orientation of which, with respect to the Magnetometer, was determined by the late Mr . Welsh, and has since been carefully verified.

The observations have been made and reduced by Mr. T. W. Baker.

Table I.
Observations of Inclination.

Table II.
Observations for the Absolute Measure of Horizontal Force.

Month.	$\log \frac{m}{\bar{X}}$ mean.	$\log m \mathbf{X}$ mean.	Value of m^{*}.
$\stackrel{1885 .}{\text { October 29th and 30th ... }}$	9•12250	0.30825	$0 \cdot 51925$
November 26th	$9 \cdot 12195$	$0 \cdot 30872$	$0 \cdot 51919$
December 29th.	$9 \cdot 12187$	$0 \cdot 30874$	$0 \cdot 51916$
January 28th...........	9-12154	0-30902	$0 \cdot 51913$
February 24th	9-12184	0•30923	$0 \cdot 51943$
March 25th	$9 \cdot 12221$	0-30860	$0 \cdot 51928$
April 1st and 2nd......	$9 \cdot 12230$	0-30865	$0 \cdot 51937$
," 28th	$9 \cdot 12086$	0-30800	$0 \cdot 51812$
May 27th	$9 \cdot 12103$	0-30932	$0 \cdot 51901$
June 28th	9-12095	$0 \cdot 30836$	0.51838
July 23rd	$9 \cdot 12171$	$0 \cdot 30807$	$0 \cdot 51867$
August 26th............	$9 \cdot 12193$	$0 \cdot 30775$	$0 \cdot 51861$
September 27th	9•12122	0•30823	$0 \cdot 51847$

Table III.-Solar Diurnal Range of the Declination.

Hour.	Summer mean.	Winter mean.	Annual mean.
0	$+5^{\prime} \cdot 6$	$+2^{\prime} \cdot 9$	$+4^{\prime} \cdot 3$
1	$+6 \cdot 8$	$+4 \cdot 8$	$+5 \cdot 8$
2	+6.0	+4.4	+5.2
3	+5.0	$+3.5$	$+4 \cdot 3$
4	+2.8	+1.5	+2.2
5	$+1.8$	$+0 \cdot 6$	$+1.2$
6	$+0 \cdot 7$	-0.5	$+0 \cdot 1$
7	$-0 \cdot 2$	-0.4	-0.3
8	-0.3	-1.0	-0.7
9	-0.3	-0.9	-0.6
10	-0.9	-1.3	$-1 \cdot 1$
11	-0.7	$-1 \cdot 3$	$-1 \cdot 0$
12	-1.0	$-1 \cdot 3$	-1.2
13	-1.2	-1.1	-1.2
14	-2.0	-0.8	$-1 \cdot 4$
15	$-2 \cdot 2$	-0.4	-1.3
16	-2.5	-0.8	-1.7
17	$-3 \cdot 0$	-0.7	-1.9
18	-3.8	-0.9	$-2 \cdot 4$
19	$-4 \cdot 0$	-1.3	-2.7
20	$-4 \cdot 2$	$-1 \cdot 5$	$-2 \cdot 9$
21	-3.5	-2 1	-2.8
22	-1.5	-1.7	-1.6
23	+18	$+0 \cdot 8$	$+1 \cdot 3$

* $m=$ moment of vibrating magnet.
Table IV.

	Thermometer．＊								Barometer．\dagger					Mean vapour tension
	$\begin{aligned} & \text { ⿷匚⿳⿻コ一冖㐅二心㇒ } \end{aligned}$	Means of－			Absolute Extremes．				Mean．	Absolute Extremes．				
		Max．	Min．	Max． and Min．	Max．	Date．	Min．	Date．		Max．	Date．	Min．	Date．	
$\underset{\substack{1885 . \\ \text { Oct．．．．．}}}{ }$	$46^{\circ} 5$	${ }^{51} \cdot 7$	$40^{\circ} 9$	$46^{\circ} \cdot 3$	$5{ }^{\circ} 8.9$	$\begin{array}{lll}\text { d．} \\ 2 & \text { h．} \\ 2 & \\ \text { p．M．}\end{array}$	$32 \cdot 8$	$\begin{array}{ll}\text { d．} \\ 30 & \text { h．} \\ 7 \\ \text { A．M．}\end{array}$	$\xrightarrow{\text { ins．}}$	${ }_{\text {lins．}}^{\text {ing }}$	${ }_{17}^{\text {d．h．}}$	${ }_{28}^{\text {ins．}}$	$\begin{array}{lll}\text { d．} & \text { h．} \\ 10 & \\ 10 & 7 . . \\ \text { A．M．}\end{array}$	57
Nov．	$43 \cdot 9$	$48 \cdot 1$	$39 \cdot 0$	$43 \cdot 6$	58.4	3011 A．M．	31.1	163 ＂，	$29 \cdot 912$	30．415	1698 P．M．	$29 \cdot 250$	26 midt．	－247
Dec．	38.7	42.7	34.1	$38 \cdot 4$	$50 \cdot 4$	38 P．м．	23.2	117 ＂	$30 \cdot 223$	30．600	$23\left\{\begin{array}{r}10 \& 11 \\ \text { A．M．}\end{array}\right\}$	$29 \cdot 263$	6 1 1 A．m．	$\cdot 202$
$\begin{array}{\|c\|} \hline 1886 . \\ \text { Jan...... } \end{array}$	$36 \cdot 3$	$40 \cdot 5$	31•3	$35 \cdot 9$	513	23 ＂	15.8	711 Р．M．	$29 \cdot 675$	$30 \cdot 166$	1210 ＂	$29 \cdot 007$	184 ＂	－183
Feb．	$33 \cdot 9$	$37 \cdot 5$	$30 \cdot 5$	34.0	47.5	13 3＂	$22 \cdot 3$	$10\left\{\begin{array}{cc}78.9 \\ \text { A．M．}\end{array}\right\}$	$30 \cdot 139$	30：759	810 P．M．	$29 \cdot 246$	17 ＂	－163
－March．．	$39 \cdot 9$	$46 \cdot 1$	34.6	$40 \cdot 4$	$64 \cdot 4$	243 ＂	$22 \cdot 2$	176	$29 \cdot 982$	$30 \cdot 426$	$\left\{\begin{array}{rrr} 9 & 8 \text { A.n. } \\ 11 & 1 & , \end{array}\right\}$	$29 \cdot 257$	$2\left\{\begin{array}{l}8 \text { r．M．} \\ \text { \＆Midt．}\end{array}\right\}$	－ 197
April．．	46.3	53.7	$40 \cdot 0$	$46 \cdot 9$	$64 \cdot 8$	$\begin{array}{llll}24 & 2 & \prime \prime\end{array}$	33.8	1130	$29 \cdot 928$	30－340	1310 Р．м．	$29 \cdot 209$	8 3 3 р．м．	$\cdot 239$
May ．．．	52.5	$60 \cdot 8$	44.4	52.6	$1 \cdot 9$	$\left\{\begin{array}{lll}7 & 3 & \prime \prime \\ 8 & 2 & "\end{array}\right\}$	$30 \cdot 9$	14 ＂	$29 \cdot 942$	30＇501	5 8 А．м．	$29 \cdot 101$	13 9 A．m．	$\cdot 296$
$\begin{aligned} & \text { June... } \\ & \text { July ... } \end{aligned}$	$\begin{aligned} & 57 \cdot 0 \\ & 62.2 \end{aligned}$	$\begin{aligned} & 65 \cdot 6 \\ & 70 \cdot 8 \end{aligned}$	$\begin{aligned} & 49 \cdot 0 \\ & 53 \cdot 5 \end{aligned}$	$\begin{aligned} & 57 \cdot 3 \\ & 62 \cdot 2 \end{aligned}$	$\begin{aligned} & 75 \cdot 2 \\ & 83 \cdot 2 \end{aligned}$		$40 \cdot 3$ 46.6		$\begin{aligned} & 29 \cdot 992 \\ & 29 \cdot 929 \end{aligned}$	$\begin{aligned} & 30 \cdot 305 \\ & 30 \cdot 326 \end{aligned}$	30 Midt． 37 А．м．	$\begin{aligned} & 29 \cdot 710 \\ & 29 \cdot 366 \end{aligned}$	$\begin{array}{ccc} 12 & 2 \text { p.M. } \\ 26 & 2 & \text { A.M. } \end{array}$	$\begin{array}{r} \because 329 \\ \cdot 397 \end{array}$
Aug．．．．	61－8！	$70 \cdot 9$	$53 \cdot 9$	$62 \cdot 4$	$84 \cdot 4$	$\left\{\begin{array}{lll}30 & 2 & \prime \prime \\ 31 & \text { p }\end{array}\right\}$	44.1	3． 5 ＂	29.999	30－299	207 ＂	$29 \cdot 514$	13 3 P．M．	$\cdot 415$
Sept．．．．	58．4§	$66 \cdot 3$	$50 \cdot 6$	58.5	$80 \cdot 9$		41.2	186	$30 \cdot 040$	$30 \cdot 491$	15 Midt ．	29．616	$21\left\{\begin{array}{ccc}1 & 8 & 3 \\ \text { P．M．}\end{array}\right\}$	－372
Means．．	48.1	54．6	41.8	$48 \cdot 2$	．	．．．．	－•		$29 \cdot 957$	．	．．．．			$\cdot 275$
The above Table is extracted from the Quarterly Weather Report of the Meteorolo of the Meteorological Council． ＊The thermometers are 10 feet above the ground． ＋anar \ddagger Mean for one day is approximate． + Reduced to 32° at M． § Means for three days														

Report of the Kew Committee.

Months.		Rainfall *			Weather. Number of days on which were registered							Wind \dagger. Number of days on which it was									
		Total.	Maximum.		Rain.	Snow.	Hail.	Thunstorms.	$\begin{gathered} \text { Clear } \\ \text { sky. } \end{gathered}$	$\begin{aligned} & \text { Over- } \\ & \text { cast } \\ & \text { sky. } \end{aligned}$		N.	N.E.	E.	S.E.	s.	S.W.	W.	N.W.	盛	\%
1885.		in.	in.																		
October ..	7.1 7.5	3.865 2.970	0.95	${ }_{24}^{23}$	16	\because										1					
- $\begin{aligned} & \text { November } \\ & \text { December }\end{aligned}$	$7 \cdot 5$ 6.6	$2 \cdot 970$ $1 \cdot 165$	0.555	5	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\stackrel{.}{1}$	\ldots	..	3 7	17 17	1	5	7 3	7 2	2 1	${ }_{3}^{1}$	6 10	$\stackrel{1}{3}$	${ }_{2}^{1}$	3 2 	4 8
1886.																					
January..	6.5	3.510	0.685	5	24	11	1	.	5	13	\cdots		1	1	2	3	7	2	5	5	,
February.	${ }_{6} 7.9$	0.670 1.350	0.270	$\stackrel{2}{20}$	${ }_{12} 8$	3 3 3	\because	\cdots		${ }_{14}^{17}$		${ }_{2}^{6}$	8	${ }_{6}^{1}$	${ }_{1}^{2}$	$\stackrel{2}{3}$	2 9	$\stackrel{2}{2}$	2 1 1	${ }_{2}^{3}$	9 2 2
March ...	6.9 6.3	1.350 1.495	0.280	20	12	3 3	\because	\cdots	5	14 12	$\stackrel{3}{1}$	$\stackrel{2}{3}$	5 9	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	1.	2	9 7	${ }_{3}^{2}$	1	$\stackrel{2}{2}$	$\stackrel{2}{2}$
April.... May.....	6.3 6.8	1.495 4.100	0.310	28	12	${ }^{\text {. }}$	1.	${ }_{2}^{1}$	5	13	$\ddot{1}$	3 1	4	3 4 4	i	$\stackrel{2}{4}$	9	${ }_{1}^{3}$	1	6	2 7
June	$6 \cdot 3$	0.845	$0 \cdot 440$	10	10	..	.	1	5	10	\cdots	6	4	4	.	1	4	4	3	4	3
July	$5 \cdot 9$	$2 \cdot 380$	0.510	25	15	..	\cdots	1		11	..	${ }_{2}^{2}$		$\stackrel{2}{2}$	1	5	8	5		5	3
August ..	$5 \cdot 7$	0.675	$0 \cdot 150$	1	10		4	7	..	3	2	1		4	8	5		4	7
Septembe:	$5 \cdot 8$	1.790	$0 \cdot 385$	10	11	1	6	9	..	5	5	3	1	4	7	1	1	3	4
Totals..		24:815			171	21	2	6	58	158	6	43	50	36	14	33	84	37	27	41	54

Kew Observatory.

Months.	Bright Sunshine.				Maximum temperature in sun's rays. (Black bulb in vacuo.)			Minimum temperature on the ground.			Horizontal movement of the Air.*		
	Total number of hours recorded.	Percentage of possible sunshine.	Greatest daily record.	Date.	Mean.	Highest.	Date.	Mean.	Lowest.	Date.	Average hourly Velocity.	Greatest hourly Velocity.	Date.
$1885 .$ October	h. 93 12	29	h. $\begin{gathered}\text { m. } \\ 9\end{gathered}$	7	deg.	deg.	1	deg.	deg.	30	miles.		31
November	939	14	${ }^{9} 6$	1	66.	-95	2	35	18.9	16	11	38	28
December 1886.	4836	20	554	10	58	79	1	29	$14 \cdot 3$	11	9	38	28
January	470	18	618	16	64	89	28	27	$10 \cdot 9$	8	11	33	16
February	3812	14	648	1	59	86	26	26	$15 \cdot 1$	9	8	27	1
March	7248	20	912	9	86	114	31	30	14.5	16	14	40 \{	30 31
April	151.0	36	11.6	23	106	121	6	36	$25 \cdot 0$	10	15	34.	31 8
May	1690	35	1254	4	114	137	8	40	$19 \cdot 4$	1	10	38	18
June	22230	45	1354	4	124	138	27	45	36.0	17	9	23	19 20
July	2110	42	1454	5	129	142	7	$49+$	39.9	11	9	33	23
August	18912	42	1154	3	125	138	3	50	$37 \cdot 1$	118	8	26	13
September	13418	35	1112	7	114	130	1	47	$32 \cdot 4$	17	10	$30\{$	13 27

\dagger Approximate mean for 21 days only.
As indicated by a Robinson's anemograph, 70 feet above the general surface of the ground.

Table IV.
Summary of Sun-spot Observations made at the Kew Observatory.

Months.	Days of observation.	Number of new groups enumerated.	Days without spots.
1885.			
October................	15	6	2
November.............	7	4	0
December	13	5	1
1886.			
January	13	3	3
February..............	8	4.	0
March .	15	9	0
April.................	17	9	0
May.................. . .	12	3	2
June	18	9	1
July...................	17	9	1
August	17	6	3
September.	- 17	6	2
Totals	169	73	15

Results of Watch Trials．Performance of 20 Watches which obtained the highest number of marks during the year．

		$\begin{aligned} & \text { 出 } \\ & \text { 券 } \\ & \text { 合 } \end{aligned}$
	－ロo！qesuәd 	
	－uolutsod јо әвиечо чұ！м әтв．јо әจินหчด	
	－27Bx 	
sәшәлұхә นәәмұәq әэиәләџ！எ		
	＊имор［втр pure dn Ге！р шәәмұәя	监ilit＋tion 0 ＋1 $1+1+1+1+11+++$
	＊Ұә quァpиәд рия dn quepuәd иәәмұәд	
	dn quериәд иәәмұәя	
$\cdot d n$ fepp pue dn qиериәд иәәмұәq әәиәәш！		
－H I 		
－әұех 		が萑00 000000000000000000
		 $1++++111111+111+11$
Balance spring，\＆c．		

APPENDIX IV.

Tist of Instruments, Apparatus, \&c., the Property of the Kew Committee, at the present date out of the custody of the Superintendent, on Loan.

To whom lent.	Articles.	Date of loan.
G. J. Symons, F.R.S.	Old Kew Thermometer Screen	1868
	Portable Transit Instrument.	1869
The Science and Art Department, South Kensington.	The articles specified in the list in the Annual	1876
	Report for 1876, with the exception of the	
	Photo-Heliograph, Pendulum Apparatus, Dip-Circle, Uniflar, and Hodgkinson's Actinometer.	
Dr. T. Thorpe, F.R.S.	Three Open Scale Standard Thermometers,	1879
	Tripod Stand	1883
LieutenantA. Gordon, R.N.	Uniflar Magnetometer by Jones No. 102	83
	complete, with three Magnets and Deflection Bar.	
	Dip-Circle, by Barrow, one Pair of Needles, and Magnetizing Bars.	
	One Bifilar Magnetometer.	
	Two Tripod Stands.	
General Sir H. Lefroy, R.A., F.R.S.	Toronto Daily Registers for 1850-3	1885
Professor W. Grylls Adams, F.R.S.	Unifilar Magnetometer, by Jones, No. 101, complete.	1883
Professor O.J.Lodge	Unifilar Magnetometer, by Jones, No. 106, complete.	1883
	Barrow Dip-Circle, No. 23, with two Needles, and Magnetizing Bars. Tripod Stand.	
Mr. W. F. Harrison.	Condensing lens and copper lamp chimney	1883
Captain W. de W. Abney, F.R.S.	Mason's Hygrometer, by Jones	1885
Professor Rücker ...	Tripod stand..	1886

