$1 / 4$

THE KEW OBSERVATORY, RICHMOND, SURREY.

1884.

RE PORT
 OF THE

 K E W COMMITTEE

 K E W COMMITTEE}

FOR THE
Year ending October 31, 1884,

With appendices containing Results of magnetical, METEOROLOGICAL, AND SOLAR OBSERVATIONS MADE AT THE OBSERVATORY.
[From the Proceedings of the Royal Society, 1884]

LONDON:
HARRISON AND SONS, ST. MARTINS LANE,

1884.

$$
\begin{aligned}
& 1 \\
& ! \\
& ! \\
& ! \\
& !
\end{aligned}
$$

Report of the Kew Committee for the Year ending

 October 31, 1884.The operations of The Kew Observatory, in the Old Deer Park, Richmond, Surrey, are controlled by the Kew Committee, which is constituted as follows :

Mr. Warren De La Rue, Chairman.

Captain W. de W. Abney, Vice-Adm. Sir G. H. Richards. R.E.

Prof. W. G. Adams.
Capt. Sir F. Evans, K.C.B.
Prof. G. C. Foster.
Mr. F. Galton.
C.B.

The Earl of Rosse. Mr. R. H. Scott.
Lieut.-General W. J. Smythe.
Lieut.-Gen. R. Strachey, C.S.I. Mr. E. Walker.

The work at the Observatory may be considered under the following heads:-

1st. Magnetic observations.
2nd. Meteorological observations.
3rd. Solar observations.
4th. Experimental, in connexion with any of the above departments.
5th. Verification of instruments.
6th. Rating of Watches.
7th. Miscellaneous.

I. Magnetic Observations.

The Magnetographs have worked uninterruptedly throughout the year.

The curves have been quite free from any large fluctuations, and indeed no unusual disturbance has been registered for a long time past. The most notable perturbations recorded took place on July 3, September 18, and October 2, but the extreme oscillation of the Declination Magnet on any of these days did not exceed 30^{\prime}, while the change of Horizontal Force was less than 0.02 , Gaussian unit.

The values of the ordinates of the different photographic curves determined in January were as follows:-

$$
\text { Declination : } 1 \text { inch }=0^{\circ} 22^{\prime} \cdot 04 . \quad 1 \mathrm{~mm} .=0^{\circ} 0^{\prime} \cdot 87
$$

Bifilar, January 4, 1884, for 1 inch $\delta \mathrm{H}=0.0276$ foot grain unit.
, $1 \mathrm{~mm} .,,=0.0005 \mathrm{~mm} . \mathrm{mgr}$. unit.
Balance, January 4, 1884 ," 1 inch $\delta V=0.0251$ foot grain unit.
, 1 mm . , $=0.0005 \mathrm{~mm}$. mgr. unit.
The distance between the dots of light upon the cylinders of both the Bifilar and Vertical Force Magnetometers having become too small for satisfactory registration, it was found necessary to readjust each instrument, after which the scale values were again determined on January 11th, with the following results:-

$$
\begin{aligned}
& \text { Bifilar for } 1 \mathrm{inch} \delta \mathrm{H}=0.0267 \text { foot grain unit. } \\
& \text { " } 1 \mathrm{~mm} .,=0.0005 \mathrm{~mm} \text { mgr. unit. } \\
& \text { Balance " } 1 \mathrm{inch} \delta V=0.0296 \text { foot grain unit. } \\
& " 1 \mathrm{~mm} . "=0.0005 \mathrm{~mm} . \text { mgr. unit. }
\end{aligned}
$$

The tabulation referred to in last year's Report of the traces of the three magnetic elements for the International Polar Commission, is now completed, and the conversion of the results into absolute units is in an advanced stage.

The difficulty experienced in adapting ordinary unprotected gas burners to the Bifilar and Balance Magnetometers, owing to the extremely sensitive nature of the gelatino-bromide paper, has now been overcome by the use of a small screen of blue glass interposed between the flame and mirror. This diminishes the intensity of the light, so that the traces are now well defined instead of being blurred.

Information on matters relating to terrestrial magnetism, and various data, have been supplied to Dr. Wild, General Tillo, Dr. Frolich, Admiral Sir G. Richards, and Dr. Balfour Stewart.

The various magnetic instruments returned by Captain Dawson, R.A., on his arrival in this country from the Fort Rae Circumpolar Expedition, were lent, with the exception of the Balance Magnetometer, one Bifilar, and one Declinometer, to Lieutenant A. Gordon, R.N., of the Meteorological Office, Canada.

Professors Rücker and Thorpe visited the Observatory on July 17, 18, and 19, for the purpose of taking a series of absolute magnetic observations preparatory to surveying the western coast of Scotland, as a preliminary operation towards the proposed repetition of the Survey of Great Britain and Ireland mentioned in last Report.

The monthly observations with the absolute instruments have been made as usual, and the results are given in the tables forming Appendix I of this Report.

The following is a summary of the number of magnetic observations made during the year:-

$$
\text { Determinations of Horizontal Intensity } 35
$$

" Dip $\ldots . ~$	164
", \quad Absolute Declination	63

Soon after the needles of Dip Circle Barrow 33 had been repolished, as mentioned in last Report, it was found that No. 1 worked somewhat indifferently, and on examining its axle slight marks of scoring were discovered. It was therefore deemed advisable to have a new axle substituted. This was accordingly done by Mr. Dover, in December last, and since then the performance of the needle has been satisfactory.

II. Meteorological Observations.

The several self-recording instruments for the continuous registration respectively of atmospheric pressure, temperature, and humidity, wind (direction and velocity), bright sunshine, and rain, have been maintained in regular operation throughout the year.
The standard eye observations for the control of the automatic records have been duly registered during the year, together with the daily observations at 0 h .8 m . P.m. in connexion with the U.S. Signal Service synchronous system. A summary of these observations is given in Appendix II.
The tabulation of the meteorological traces has been regularly carried on, and copies of these, as well as of the eye observations, with notes of weather, cloud, and sunshine have been transmitted weekly to the Meteorological Office.

The following is a summary of the number of meteorological observations made during the past year:-

$$
\text { Readings of standard barometer } 1726
$$

dry and wet thermometers........ 3452
maximum and minimum thermometers 732
radiation thermometers 1923
rain gauges 732
Cloud and weather observations 1882
Measurements of barograph curves............. 8784
dry bulb thermograph curves.. 9516
wet bulb thermograph curves. . 8784
wind (direction and velocity). . 17568
rainfall curves 576
sunshine traces............... . 2073
In compliance with a request made by the Meteorological Council
to the Committee, the Meteorological instruments at the Observatories of Armagh, Falmouth, Oxford (Radcliffe), and Valencia have been inspected by Mr. Whipple, and those at Aberdeen and Stonyhurst by Mr. Baker, during their respective vacations.

Assistance has also been given in arranging the plans, designs, \&c., for the New Observatory, now in progress of erection at Falmouth.

With the concurrence of the Meteorological Council, weekly abstracts of the meteorological results have been regularly forwarded to, and published by "The Times" and "The Torquay Directory." Data have also been supplied to the Council of the Royal Meteorological Society, the editor of "Symons's Monthly Meteorological Magazine," the Secretary of the Institute of Mining Engineers, Messrs. Gwilliam, Mawley, Rowland, and others. The cost of these abstracts is borne by the recipients.

The weekly abstracts of meteorological results, which have been published by the "Illustrated London News" withont interruption since 1856, were discontinued in July last, at the request of the proprietors, owing to changes being introduced in the form of publication of the paper.

Electrograph.-This instrument was temporarily dismounted in May, whilst some repairs and painting of the instrument room were in progress, and recently some trouble has been experienced in keeping the potential of the charge constant, otherwise it has been maintained in continuous action.

The tabulation of the curves is at present in arrear, not having been completed beyond February 28, 1882.

Its scale value has been redetermined on two occasions by means of the Portable Electrometer, White No. 53, such determinations being necessary after every readjustment of the instrument.

III. Solar Obsertations.

The sketches of Sun-spots, as seen projected on the photoheliograph screen, have been made on 185 days, in order to continue Schwabe's enumeration, the results being given in Appendix II, Table IV.

A few experiments were made in June with the Photoheliograph, with a view of testing the suitability of certain plates prepared by Messrs. Morgan and Kidd for solar photography. With this exception nothing has been done in that branch during the year.

Transit Observations.-Frequent observations of both solar and sidereal transits have been made, for the purpose of keeping correct local time at the Observatory.

Numerous clock and chronometer comparisons have been also made. The Observatory Chronometers, Parkinson and Frodsbam No. 2408, and Molyneux No. 2125, have been cleaned and readjusted,
and the following clocks are kept carefully rated in addition as timekeepers of the Observatory :-French ; Shelton K. O.; Shelton No. 35 ; and Dent 2011. By the courtesy of Mr. Preece, Superintendent of Telegraphs, the Richmond Chief Post Office was placed in direct communication with the Royal Observatory, Greenwich, on January 22, and enabled to receive the time signal at 10 A.m., when a period of cloudy weather had rendered the true time a little uncertain. Two chronometers conveyed to the Post Office, showed, on comparison with the signal, a satisfactory agreement between the times as kept at the two Observatories.

IV. Experimental Work.

Actinometry.-A report on the Balfour Stewart actinometer observations made last year, was submitted in December to the Meteorological Council, at whose expense the observations were carried on, and it was resolved to discontinue them. The instrument has since been returned to Professor Balfour Stewart at his request.

Fog Gauge.-In conformity with a suggestion contained in an article in "Symons's Meteorological Magazine," vol. xviii, p. 58, a painted board has been set up to the north of the Observatory, to serve as a gauge for measuring the intensity of fogs.

Since its erection in January last no fog, however, has been observed of intensity l on its scale.

Magnetic Survey of Great Britain and Ireland.-With reference to this, the Sub-Committee appointed last year has now under consideration the details necessary for the early prosecution of the survey.

Professors Rücker and Thorpe have during the past summer made preliminary observations at a number of stations along the West Coast of Scotland, their base observations being made at the Observatory as above stated.

Nocturnal Radiation.-Experiments have been made with a new pattern thermometer, designed by Messrs. Negretti and Zambra for observations of nocturnal terrestrial radiation, with a view to the avoidance of several serious defects in the Rutherford Minimum, now generally used. Very favourable results were obtained until the instrument was damaged, and had to be sent back to the makers. It has not yet been retarned to the Observatory.

Photo-nephograph.-Various experiments have been made with this apparatus during the year, but in consequence of the short base line obtainable with the small amount of connecting wire available for working the pair of cameras, very few satisfactory determinations of cloud altitudes have been made.

A report having, however, been submitted to the Meteorological Council, that body has granted a sum of $40 l$. to the Committee
for the purpose of purchasing a half-mile of double wire telegraphic cable and reel, together with switches and keys, in order that the t wo cameras may be worked at a distance of 800 yards apart.

A stand has been erected on the roof of the Observatory, where camera A will be permanently placed, and camera B will be similarly supported by another permanent stand at the other end of the cable. Both cameras being oriented with reference to the same point of the horizon, the distant observer will be instructed as to the direction and elevation of his instrument by means of a telephone switched on to the line for the purpose.

Some difficulties having been met with in working the electrical instantaneous shutters, part of the apparatus was returned to the makers, the Philosophical Instrument Construction Society, Cam. bridge, and rectified.

Experiments with the new arrangement are now being made, and should they prove successful it is intended to bury the cable in the ground across the park beside the Observatory gas main, thereby obviating the present necessity of laying out and winding it in again every time it is desirable to make cloud altitude and air-current motion determinations.

Solar Radiation Thermometers.-The experiments with a view to determining the causes of variation in the readings of similarly constructed and exposed black bulb thermometers, in vacuo, have been continued during the year.

The first series of observations having been concluded, and the results communicated to the Royal Meteorological Society and published in their "Quarterly Journal," vol. x, p. 45, the six thermometers were returned to Messrs. Negretti and Zambra, in order that all might have their bulbs coated with three eoats of lampblack and their jackets altered: one pair is now enclosed in small bulbs, a second pair in medium, and the third pair in large bulbs.

With the exception of one which was accidentally broken in July, they have been read daily since May 3. The results have not yet been fully discussed, but a cursory inspection appears to indicate that the larger the containing bulb the lower is the reading of the enclosed blackened bulb thermometer.

Ventilation Experiments. - Assistance has been given to a Sub-Committee of the Sanitary Institute in their experiments on the motion of air in ventilating tubes, which have been carried on during the summer under the charge of Mr. R. Rymer Jones, C.E., in a hut erected for the purpose, adjacent to the Observatory.

The experiments are in continuation of those prosecuted in the Experimental House in 1880.

Wind Integrator.-At the request of Mr. Walter Baily, M.A., a windcomponent integrator of his invention, described in the "Phil. Mag.,"
vol. xvii, p. 482, has been erected in the Experimental House, being attached by permission of the Meteorological Council to their spare Beckley Anemograph.
Some difficulties were experienced on account of the unsuitability of the electrical counters fitted to it for registration of light winds, but these have now been overcome, and the instrument is working satisfactorily.

V. Verification of Instruments.

The following magnetic instruments have been verified, and their constants determined:-

3 Unifilar Magnetometers for Elliott Brothers, London.
3 Dip Circles for Elliott Brothers, London.
1 Unifilar Magnetoneter for Negretti and Zambra, London.
1 Dip Circle for Negretti and Zambra, London.
There have also been purchased on commission and verified :-
A Unifilar Magnetometer and a Dip Circle for Professor Rücker, Leeds College of Science.
A small Robinson's Pattern Dip Circle for Senhor Capello, Lisbon.
2 Fox Circles with Gimbal Tables complete, for the United States Government.
6 small Collimating Magnets for Professor Tacchini, Rome.
One Pair of Dip Needles for the Greely Relief Expedition.
A Dip Circle for Dr. Wild, St. Petersburg.
A set of self-recording Magnetometers for the United States Government.
A Unifilar and a Pair of Dip Needles are at preseut undergoing examination.
The General Verification Department a continues in full activity, a considerable increase having taken place in the number of Sikes' Hydrometers and Sextants examined.

The total number of instruments tested in the past year was as follows:-

Barometers, Standard	44
Marine and Station	80
Aneroids.	84
Total.	208

Thermometers, ordinary Meteorological 1225
Standard 83
", Mountain 164
" Clinical 8726
42
" Solar radiation
Total. 10240
Hydrometers 1161
Anemometers. 2
Rain Gauges 3
Sextants. 64
Index and Horizon Glasses, unmounted 87
Dark Glasses, unmounted 254
Besides these, 13 Deep-sea Thermometers have been tested, 4 ofwhich were subjected, in the hydraulic press, withont injury, topressures exceeding two tons on the square inch. 142 Thermometershave been compared at the freezing-point of mercury, making a totalof 10395 for the year.

Duplicate copies of corrections have been supplied in 30 cases.
The number of instruments rejected on account of excessive error, or which from other canses did not record with sufficient accuracy, was as follows :-
Thermometers, clinical 40
ordinary meteorological 2
Varions 27

10 Standard Thermometers have also been calibrated, and supplied to societies and individuals during the year.
A Thermograph has been examined, and had its scale values determined for the Japanese Government. A Rishard Temperature Recorder, a Self-registering Aneroid, an Electrograph, and a Richard Humidity Recorder, have also been tried.
There are at present in the Observatory undergoing verification, 32 Barometers, 742 Thermometers, 14 Hydrometers and 10 Sextants.

VI. Rating of Watches.

The arrangements for rating watches mentioned in last year's Report have been completed and brought into operation successfully, at a cost of $£ 193$.
A second safe having been purchased by the Committee, an apparatus was fitted to it which enables the enclosed watches to be maintained continuously at either high temperatures, without being subjected to injury by fumes of gas, or at low temperatures.

Two additional Mean Tlime Clocks have been obtained, one of them, a Transit of Venus Expedition Clock, Dent 2011, has been lent to the Committee by the Astronomer Royal; the other has been purchased. Mr. T. Mercer, watch manufacturer, of Coventry, having obligingly placed a number of watches at the disposal of the Superintendent, two dozen were obtained on loan from him, and were daily compared, tested, and rated by the assistants for three months. This enabled them to become familiarized with the work of rating before watches were received from the public.
The Superintendent, after communicating with the Directors of the Geneva and the Yale Observatories, prepared a circular specifying the conditions watches must fulfil in order to obtain certificates of the various classes, A, B, and C, which are issued, and the nature of the test to which they will be subjected. This circular, together with the forms of certificates, \&c., after revision and approval by the Committee, was printed, and copies forwarded to all the leading watch manufacturers of this country, as well as to the principal journals, many of which very favourably noticed the scheme.

Rating commenced on May 13, and up to the present 42 watches have been tried, of which 22 were submitted by the owners, and 20 by the manufacturers, or by dealers.
Certificates have been awarded to 17 of these watches, 7 are now on trial.
The following table will indicate the nature of the trials to which the certificates refer :-

Position of watch during test.	For certificate of Class		
	A.	B.	C.
Vertical, with pendant up..	10 days	14 days	8 days
", ", ", right.	5 "	-	-
Horizontal," with dial up	5 "	14- days	8 days
", at temp. $85^{\circ} \mathrm{F}$.	5 5	1 day	-
	5 "	1 „	-
Not rated.		1 "	-
Total duration of test.	45 days	31 days	16 days

VI. Miscellaneous.

Photographic Paper, \&c.-This has been supplied to the Observatories at Batavia, Coimbra, Colaba, Mauritius, Stonyharst, and St. Petersburg, and to the Meteorological Office.

Blank Magnetic Observation Forms have been supplied to Professors Brioschi and Rücker, also to Messrs. Negretti and Zambra.

A glass scale for measuring anemograph curves was constructed for the Royal Alfred Observatory, Mauritius.

Two glass scales graduated in millimeters for the purpose of tabulating magnetic curves were constructed for the Toronto Observatory, and also twelve paper scales were supplied for the magnetometers.

A level with spare bubbles has been supplied to Dr. E. van Rijckevorsel, and a hemi-cylindrical lens to Dr. Wild, St. Peters burg.

Exhibition.-A number of instruments of interest were exhibited at the Fifth Annual Exhibition of the Royal Meteorological Society, which was devoted to thermometers and thermometry, and held in the rooms of the Institution of Civil Engineers in March last.

International Health Exhibition.-The Committee exhibited specimens of the certificates issued with instruments verified at the Observatory, as well as diagrams showing the number of thermometers tested annually since 1870, and also indicating the improvement in quality of such instruments.

Workshop.-The several pieces of Mechanical Apparatus, such as the Whitworth Lathe and Planing Machine, procured by Grants from either the Government Grant Funds or the Donation Fund for the use of the Kew Observatory, have been kept in thorough order.

Library.-During the year the Library has received, as presents, the publications of--

31 English Scientific Societies and Institutions, and
76 Foreign and Colonial Scientific Societies and Institutions.
Several volumes of daplicates of works on Astronomy, Terrestrial Magnetism, and Meteorology, have been presented to the Electrical Library of the Franklin Institute, Philadelphia. Others have also been disposed of to various individuals.

Additional shelves have been provided to afford more room, which was urgently required.

House, Grounds, and Footpath.-These have all been kept in order during the year. The iron fencing round the building has been painted, a wall on each side of the entrance steps has been erected, and the necessary external repairs have been effected by Her Majesty's Commissioners of Works.

Personal Establishment.

The staff employed is as follows :-
G. M. Whipple, B.Sc., Superintendent.
T. W. Baker, Chief Assistant and Magnetic Observer.
J. Foster, Verification Department.
H. McLaughlin, Librarian and Accountant.
E. G. Constable, Solar Observations and Watch Rating
T. Gunter, Verification Department.
W. Boxall, Photography, and Tabulation.
E. Dagwell, Watch Rating " "
C. Henley \}Verification Department.
$\left.\begin{array}{l}\text { H. A. Widdowson } \\ \text { H. Barton }\end{array}\right\}$ Verification Department.
M. Baker, Messenger and Care-taker.
E. Coates resigned his duties in September.
C. Bell was temporarily employed in December as additional assistant in Verification Department.

Kew Observatory Receipts and Payments Account from November 1, 1883, to November 1, 1884.

$\left|\right.$| -1 |
| :---: |
| 0 |
| 10 |
| $\stackrel{0}{0}$ |
| |$|$

[^0]\[

\]

November 13, $1884 . \quad$ Examined and compared with the Vouchers, and found correct. ASSETS.

$£$	8.	d.	
\ldots	482	7	0
\ldots	38	1	5
\ldots	80	15	0
\ldots	1	6	3
\ldots	44	15	4
\ldots	12	12	5
\ldots	8	10	0
\ldots	91	4	0
\ldots	8	19	9
$\mathbf{K 7 6 8}$	11	2	

APPENDIX I.

Magnetic Observations made at the Kew Observatory, Lat. $51^{\circ} 28^{\prime} 6^{\prime \prime} N$. Long. $0^{\mathrm{h}} 1^{\mathrm{m}} 15^{\mathrm{s}} 1 \mathrm{~W}$., for the year October 1883 to September 1884.
The observations of Deflection and Vibration given in the annexed Tables were all made with the Collimator Magnet marked K C 1, and the Kew 9 -inch Unifilar Magnetometer by Jones.

The Declination observations have also been made with the same Magnetometer, Collimator Magnets 101 B and N E being employed for the purpose.
The Dip observations were made with Dip-circle Barrow No. 33, the needles 1 and 2 only being used; these are $3 \frac{1}{2}$ inches in length.

The results of the observations of Deflection and Vibration give the values of the Horizontal Force, which, being combined with the Dip observations, furnish the Vertical and Total Forces.

These are expressed in both English and metrical scales-the unit in the first being one foot, one second of mean solar time, and one grain; and in the other one millimetre, one second of time, and one milligramme, the factor for reducing the English to metric values being $0 \cdot 46108$.

By request, the corresponding values in C.G.S. measure are also given.
The value of $\log \pi^{2} \mathrm{~K}$ employed in the reduction is 1.64365 at temperature $60^{\circ} \mathrm{F}$.

The induction-coefficient μ is 0.000194 .
The correction of the magnetic power for temperature t_{0} to an adopted standard temperature of $35^{\circ} \mathrm{F}$. is

$$
0 \cdot 0001194\left(t_{0}-35\right)+0 \cdot 000,000,213\left(t_{0}-35\right)^{2}
$$

The true distances between the centres of the deflecting and deflected magnets, when the former is placed at the divisions of the deflectionbar marked $1 \cdot 0$ foot and $1 \cdot 3$ feet, are $1 \cdot 000075$ feet and $1 \cdot 300097$ feet respectively.
The times of vibration given in the Table are each derived from the mean of 12 or 14 observations of the time occapied by the magnet in making 100 vibrations, corrections being applied for the torsion-force of the suspension-thread subsequently.

No corrections have been made for rate of chronometer or arc of vibration, these being always very small.

The value of the constant P, employed in the formala of reduction $\frac{m}{\mathrm{X}}=\frac{m^{\prime}}{\bar{X}^{\prime}}\left(1-\frac{\mathrm{P}}{r_{0}^{2}}\right)$, is -0.00129 .

In each observation of absolute Declination the instrumental readings have been referred to marks made upon the stone obelisk erected 1,250 feet north of the Observatory as a meridian mark, the orientation of which, with respect to the Magnetometer, was determined by the late Mr. Welsh, and has since been carefully verified.

The observations have been made and reduced by Mr. T. W. Baker.

Vibration Observations for Absolute Measure of Horizontal Force.
Table I.

Month.	G. M. T.	Temperature. Fahr.	$\left\|\begin{array}{c} \text { Time of } \\ \text { one } \\ \text { Vibration.* } \end{array}\right\|$	$\log m \mathbf{X}$. Mean.	Value of $m . \dagger$
$\begin{array}{r} 1883 . \\ \text { October... } \end{array}$	d. h. m. 2612 4 Р.м.	$60^{\circ} 7$	$\begin{aligned} & \text { secs. } \\ & 4 \cdot 6518 \end{aligned}$		
-	3 3 Р.м.	61.0	4:6500	$0 \cdot 30920$	$0 \cdot 52128$
November.	2711 44 A.m.	47.9	$4 \cdot 6480$		
	281238 Р.м.	$60 \cdot 3$	$4 \cdot 6534$	0.30880	$0 \cdot 52093$
December .	281122 A.m.	44.3	4.6478		
	242 Р.м.	$47 \cdot 1$	$4 \cdot 6478$	0.30882	$0 \cdot 52110$
1884.January..........	291126 A.m.	$49 \cdot 5$	$4 \cdot 6488$		
	258 Р.м.	56.7	$4 \cdot 6477$	0.30919	0.52060
February	22118 A.m.	51.8	$4 \cdot 6508$		
	3 2 P.M.	55.5	$4 \cdot 6494$	$0 \cdot 30887$	0.52054
March .	311147 A.m.	53.0	$4 \cdot 6524$		
	3 9 р.м.	58.5	4.6500	$0 \cdot 30877$	$0 \cdot 52036$
April............	$291110 \mathrm{~A} . \mathrm{m}$.	58.3	$4 \cdot 6530$		
	3 8 P.M.	$69 \cdot 3$	$4 \cdot 6522$	$0 \cdot 30900$	0.52051
May.	291135 А.m.	53.8	$4 \cdot 6473$		
	326 р.м.	59.2	4.6487	0.30934	0.52015
June	301119 A.m.	73.0	$4 \cdot 6567$		
	3 6p.m.	78.6	$4 \cdot 6553$	$0 \cdot 30910$	$0 \cdot 52015$
July	3011 5 А.м.	$72 \cdot 2$	$4 \cdot 6537$		
	257 р.м.	77.0	$4 \cdot 6563$	0.30924	0.52019
August	281137 A.м.	$71 \cdot 3$	$4 \cdot 6568$		
	347 р.м.	$75 \cdot 0$	4.6533	$0 \cdot 30912$	$0 \cdot 52019$
October..........	11144 A.m.	60.9	$4 \cdot 6548$		
	310 р.м.	$66 \cdot 3$	$4 \cdot 6520$	$0 \cdot 30886$	0.51970

* A vibration is a movement of the magnet from a position of maximum displacement on one side of the meridian to a corresponding position on the other side.
$\dagger m=$ magnetic moment of vibrating magnet.

Observations of Deflection for Absolute Measure of Horizontal Force.
Table II.

Month.	G. M. T.	Distances of Centres of Magnets.	Temperature.	Observed Deflection.	$\log _{\overline{\mathbf{X}}}^{m}$ Mean.
$\begin{gathered} 1883 . \\ \text { October......... } \end{gathered}$	d. h. m. 261246 р.м.	foot.	61.4	${ }^{\circ} 515238$	9•12494
		1.0 1.3			
	219 "	1.0	$\because 1.5$	152255	
		$1 \cdot 3$		65639	
November......	271233 P.м.	1.0	$50 \cdot 0$	$\begin{array}{rrrr}15 & 23 & 7 \\ 6 & 57 & 18\end{array}$	9•12476
		$1 \cdot 3$			
	28120 "	1.0 1.3	$57 \cdot 7$	$\begin{array}{rrrr}15 & 24 & 1 \\ 6 & 56 & 43\end{array}$	
December	281210 P.m.	$1 \cdot 3$	$44 \cdot 9$	152545	$9 \cdot 12502$
	$25 \text {, }$	1.31.0	$\because 461$	655730$15 \quad 2537$65750	
$\begin{array}{c\|} 1884 . \\ \text { January............. } \end{array}$					
		$1 \cdot 3$	$52 \cdot 0$		
	291215 р.м.	1.0		152218	9•12382
	218	1.3 1.0	$\because 5.6$	65620 152052	
		$1 \cdot 3$	65532	
February	$2212 \quad 2$ Р.m.	1.0	$53 \cdot 8$	$\begin{array}{rrrr}15 & 22 & 39 \\ 6 & 56 & 5\end{array}$	9•12402
		1.3	56.2		
	220 "	1.0 1.3	$56 \cdot 2$	152136 65546	
March	311228 P.m.	1.0	$54 \cdot 8$	151522656	9•12382
		$1 \cdot 3$			
	230 "	1.0	$59 \cdot 2$	152025	
		$1 \cdot 3$	65520	
April	29121 P.M.	1.0	$60 \cdot 1$	$15 \quad 21$66	9•12386
		1.3			
	219 "	1.0 1.3	$66 \cdot 0$	1519 6 64	
May	291226 p.m.	1.0	$55 \cdot 8$	151943	9•12292
		1.3		$\begin{array}{r}65449 \\ \hline 1519\end{array}$	
	239 "	1.0	$58 \cdot 3$	151910	
		$1 \cdot 3$	65440	
June	30127 P.M.	1.0	72.7\ldots.	$\begin{array}{rrrr}15 & 18 & 26 \\ 6 & 54 & 10\end{array}$	9•12315
		$1 \cdot 3$			
	219 "	1.0 1.3	$76 \cdot 7$	151555 6 53	
July	301155 A.m.	1.0	$73 \cdot 8$	$\begin{array}{rrr}15 & 16 & 24 \\ 6 & 54 & 1\end{array}$	9•12308
		$1 \cdot 3$			
	25 P.m.	1.0	$77 \cdot 6$	151630	
		13	65342	
August	281211 р.м.	1.0	71.3$\ldots .$.	$\begin{array}{r}151759 \\ 6 \quad 54 \\ \hline 15\end{array}$	$9 \cdot 12320$
		$1 \cdot 3$			
	211 "	1.0 1.3	$74 \cdot 3$	151652 653	
		$1 \cdot 3$	\cdots		
October........	$\begin{array}{r} 1230 \text { P.M. } \\ 228 \mathrm{~m} \end{array}$	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \\ & 1: 0 \\ & 1: 3 \end{aligned}$	$62 \cdot 6$	151952	9•12264
				653 1518	
			$65 \cdot 0$	$\begin{array}{r}6518 \\ \hline 654 \\ \hline\end{array}$	

Dip Observations.-Table III.

Table IV.

Month.	Declination. \qquad Mean of Observations	Magnetic Intensity.								
		English Units.			Metric Units.			C. G. S. Measure.		
		X, or Horizontal Force.	Y, or Vertical Force.	Total Force.	$\begin{gathered} \text { X, or } \\ \text { Horizontal } \\ \text { Force. } \end{gathered}$	Y, or Vertical Force.	Total Force.	$\begin{gathered} \text { X, or } \\ \text { Horizontal } \\ \text { Force. } \end{gathered}$	Y, or Vertical Force.	Total Force.
$\begin{gathered} 1883 . \\ \text { October } \end{gathered}$	West. ${ }^{18} 33^{\prime} 57$	3-9096	9-5168	$10 \cdot 2885$	$1 \cdot 8026$	$4 \cdot 3880$	$4 \cdot 7438$	$0 \cdot 1803$	$0 \cdot 4388$	$0 \cdot 4744$
November	183518	3-9086	9-5242	$10 \cdot 2951$	1.8022	$4 \cdot 3915$	$4 \cdot 7469$	$0 \cdot 1802$	0.4391	0.4747
December ...	183414	3-9075	$9 \cdot 5155$	$10 \cdot 2866$	1.8017	$4 \cdot 3874$	$4 \cdot 7430$	$0 \cdot 1802$	$0 \cdot 4387$	$0 \cdot 4743$
1884. January	183124	3.9145	9-5293	$10 \cdot 3020$	$1 \cdot 8049$	$4 \cdot 3938$	$4 \cdot 7501$	0•1805	0*4394	$0 \cdot 4750$
February......	183255	$3 \cdot 9122$	9•5223	10-2946	$1 \cdot 8038$	$4 \cdot 3906$	$4 \cdot 7467$	$0 \cdot 1804$	$0 \cdot 4391$	$0 \cdot 4747$
March	18378	$3 \cdot 9127$	9-5115	$10 \cdot 2849$	1.8041	$4 \cdot 3856$	$4 \cdot 7422$	$0 \cdot 1804$	$0 \cdot 4386$	$0 \cdot 4742$
April	183323	3.9135	9-5205	$10 \cdot 2918$	$1 \cdot 8045$	$4 \cdot 3898$	4.7454	$0 \cdot 1805$	$0 \cdot 4390$	$0 \cdot 4745$
May..........	183318	3•9:93	9-5302	$10 \cdot 3046$	1.8071	$4 \cdot 3942$	$4 \cdot 7513$	$0 \cdot 1807$	$0 \cdot 4394$	0-4751
June	$18 \quad 3325$	$3 \cdot 9171$	$9 \cdot 5183$	$10 \cdot 2927$	$1 \cdot 8061$	4.3887	$4 \cdot 7458$	$0 \cdot 1806$	$0 \cdot 4389$	0-4746
July..........	183052	$3 \cdot 9181$	9•5286	$10 \cdot 3027$	$1 \cdot 80{ }^{\circ} 6$	$4 \cdot 3935$	$4 \cdot 7504$	$0 \cdot 1807$	$0 \cdot 4394$	$0 \cdot 4750$
August	183355	$3 \cdot 9171$	9•5266	$10 \cdot 3005$	$1 \cdot 8061$	4-3926	$4 \cdot 7494$	$0 \cdot 1806$	$0 \cdot 4393$	$0 \cdot 4749$
September	18324	3.9184	9-5378	$10 \cdot 3115$	1 -8067	4-3977	$4 \cdot 7544$	0-1807	0.4398	$0 \cdot 4754$

	Thermometer.								Barometer.*					$\begin{gathered} \text { Mean } \\ \text { vapour- } \\ \text { tension. } \end{gathered}$
		Means of-			Absolute Extremes.				Mean.	Absolute Extremes.				
		Max.	Min.	Max. and Min.	Max.	Date.	Min.	Date.		Max.	Date.	Min.	Date.	
$\begin{gathered} 1883 . \\ \text { Oct..... } \end{gathered}$	$50^{\circ} 5$	$56^{\circ} 4$	44×8	50.6	${ }^{6} 2 \cdot 6$	$\begin{aligned} & \text { d. h. } \\ & 14 \mathrm{l} \text { р.м. } \end{aligned}$	$3{ }^{\circ} \cdot 4$	d. h . $210.25 \text { A.M. }$	$\begin{gathered} \text { ins. } \\ 29 \cdot 983 \end{gathered}$	$\begin{gathered} \text { ins. } \\ 30 \cdot 544 \end{gathered}$	d. h. 810 A.m.	$\begin{aligned} & \text { ins. } \\ & 29 \cdot 298 \end{aligned}$	$\begin{array}{ll} \text { d. } & \text { h. } \\ 17 & 6 \text { A.M. } . \end{array}$	in.
Nov. . .	$43 \cdot 4$	$49 \cdot 1$	$37 \cdot 5$	$43 \cdot 3$	56.0	611 А.м.	$29 \cdot 3$	$\left\{\begin{array}{lll} 13 & 7 & \prime \prime \\ 15 & 8 & \prime \prime \end{array}\right\}$	29.850	$\cdot 424$	2810 р.м.	28.975	68 "	$\cdot 243$
$\begin{array}{\|c} \text { Dec. ... } \\ 1884 . \end{array}$	40.7	44.3	$36 \cdot 5$	$40 \cdot 4$	54.0	$\left.\left\lvert\, \begin{array}{ccc}3 & 7 & 7 \\ \text { р.м. }\end{array}\right.\right\}$	$29 \cdot 4$		30-175	-605	$2510 \mathrm{~A} . \mathrm{m}$.	29•431	113 ,	-213
Jan.....	$43 \cdot 9$	47.6	$39 \cdot 8$	$43 \cdot 7$	54.2	23 4 4 "	$32 \cdot 1$	1 4 A.m.	30.106	-674	1611 "	28.544	26 7 P.м.	-245
Feb. ...	$42 \cdot 2$	47.0	$37 \cdot 5$	$42 \cdot 3$	54.8	132 "	$29 \cdot 5$	36 "	29.923	-503	38 ;	$29 \cdot 377$	19 р.м.	$\cdot 223$
March. .	43.9	50.7	$37 \cdot 7$	$44 \cdot 2$	$65 \cdot 3$	153 ",	$27 \cdot 2$	13 ",	$29 \cdot 945$	-280	5 Midt.	$\cdot 152$	106 А.M.	-223
April.	$44 \cdot 7$	52.0	37.5	$44 \cdot 8$	$65 \cdot 4$	22 ",	$28 \cdot 1$	235 "	29•831	$\cdot 113$	1311 р.м.	$\cdot 281$	4 Midt.	$\cdot 221$
May ...	53.5	$62 \cdot 8$	$44 \cdot 5$	$53 \cdot 7$	76.7	2420	$35 \cdot 5$	15 ",	$30 \cdot 006$	-456	228 A.m.	-356	$3 \quad 7$ Р.м.	'285
June...	$58 \cdot 1$	66.7	50•1	58.4	$80 \cdot 0$	274 "	$40 \cdot 9$	11 ",	30.041	$\cdot 342$	12 Midt.	$\cdot 522$	75 А.м.	-349
July ...	$62 \cdot 8$	$71 \cdot 9$	$54 \cdot 2$	$63 \cdot 1$	83.6	$4\left\{\begin{array}{ll}1 & \prime \prime \\ 2 & \prime\end{array}\right\}$	$43 \cdot 2$	265 "	$29 \cdot 960$	'217	111 A.m.	$\cdot 614$	10 3 P.м.	$\cdot 423$
Aug....	$64 \cdot 1$	75.0	$53 \cdot 9$	64.5	$89 \cdot 2$	1130 ", \dagger	46.6	265 "	30.014	$\cdot 277$	58 "	-660	29 5 A.M.	$\cdot 410$
Sept....	$59 \cdot 1$	66.8	51.8	$59 \cdot 3$	$80 \cdot 0$	172 "	$40 \cdot 6$	306 \%,	30.016	$30 \cdot 386$	$18\left\{\begin{array}{rr}9 & \prime \\ 10 & "\end{array}\right\}$	$29 \cdot 410$	45	- 401
Means. .	50.6	57.5	$43 \cdot 8$	$50 \cdot 7$.	\ldots	-	$29 \cdot 988$	\ldots	$\cdot 295$
The above Table is extracted from the Publications of the Meteorological Of Meteorological Council.														

Report of the Kew Committee.
Meteorolcgical Observations.-Tabie II.

Months.	Mean amount of cloud < $0=$ clear, $10=$ over cast).	Rainfall*.			Weather. Number of days on which were registered							Wind \dagger. Number of days on which it was									
		Total.	Maximum.		Rain.	Snow.	Hail.	Thun-derstorms	Clear sky.	Overcast sky.		N.	N.E.	E.	S.E.	S.	S.W.	W.	N.W.	辰	¢
$1883 .$	70	$\operatorname{ing}_{1.750}$	$\mathrm{in}_{0.420}$	15	13					11	\cdots	5	3	2	1	3	6			3	10
November	6.0	$2 \cdot 540$	$0 \cdot 345$	+	19		\because	\cdots	2	9	\cdots	1	2	.	1	${ }_{6}$	6	7	2	${ }_{5}^{3}$	10 8
$\begin{aligned} & \text { December } \\ & 1884 . \end{aligned}$	$8 \cdot 3$	0.660	$0 \cdot 340$	10	17	3	.	\cdots	1	19	1	5	2	2	2	.	3	9	5	3	8
January..	8.2	$2 \cdot 295$	0.605	26	15	2	2	\cdots	2	25	4	1	1	1	\cdots	1	12	9	2	4	7
February .	$7 \cdot 1$	$1 \cdot 400$	$0 \cdot 350$	1	13	.	2	1		15	1	1	1	6	.	5	8	4	1	3	4
March ...	$6 \cdot 5$	$1 \cdot 240$	$0 \cdot 460$	10	8	.	\cdots	..	3	11	.	2	6	3	\because	6	4	4	3	3	5
April	67	$1 \cdot 255$	0.540	6	10	.	2	2	1	12	.	2	12	3	1	4	2	2	1	3	5
May....	$5 \cdot 1$	0.635	$0 \cdot 240$	5	9	.	3	2	9	10	.	1	4	6	.	1	11	6	1	1	2
June	6.4	$2 \cdot 200$	$0 \cdot 890$	6	8	\cdots	1	3	4	12	.	6	6	3	\cdots	1	3	2	5	4	7
July	6.7	$2 \cdot 240$	$0 \cdot 880$	6	16	.	1	2	1	13	.	2	..	.	2	4	13	6	1	3	6
August ..	4.5	0.960	0.300	27	9	.	.	1	9	7	.	3	2	5	1	4	7	3	1	5	9
September	$5 \cdot 4$	1.690	$0 \cdot 670$	3	15	5	9	.	1	4	5		4	8	6		1	4
Totals. .		18.865			152	5	12	11	37	153	6	30	43	36	9	39	83	63	25	38	75

Meteorological Observations.-Table III.
Kew Observatory.

Months.	Bright Sunshine.*				Maximum temperature in sun's rays. (Black bulb in vacuo.)			Minimum temperature on the ground.			Horizontal movement of the Air. \dagger			
	Total number of hours recorded.	Percentage of possible sunshine.	Greatest daily record.	Date.	Mean.	Highest.	Date.	Mean.	Lowest.	Date.	Average hourly Velocity.	Greatest hourly Velocity.	Date.	Hour.
$\begin{gathered} 1883 . \\ \text { October } \end{gathered} .$	$\mathrm{h} . \mathrm{m} .$	26	$\begin{array}{rrr}\text { h. } & \mathrm{m} \\ 9 & 36\end{array}$	2	deg. 91	$\begin{gathered} \text { deg. } \\ 117 \end{gathered}$	2	deg. $40 \cdot 2$	deg. 28.0	23	miles. 9	miles. 34	4	Noon.
Norember	8048	30	60	10	79	92	9	31.5	$19 \cdot 4$	14, 15	9	33	25	10 А.м.
$\begin{gathered} \text { December } \\ 1884 . \end{gathered}$	3154	13	448	$4 \& 7$	62	84	13	$32 \cdot 6$	$22 \cdot 3$	5	11	43	12	3 А.м.
January	2924	11	636	28	67	82	29	35.0	$26 \cdot 7$	13	12	53	26	7 P.M.
February	5412	19	648	18	80	99	20	$32 \cdot 8$ $30 \cdot 9$	$21 \cdot 2$ 18.8	13 3 3	13 9	38 28	2 31	Noon.
March	1080	29	96	16	93	113	18	$30 \cdot 9$ $31 \cdot 0$	18.8	$\begin{array}{r}3 \\ \hline\end{array}$	9 9	28	31	2 P.M. 5 ¢.м.
April	9830	24	830	9	104	125	8	$31 \cdot 0$ $39 \cdot 0$	16.1 27.7	23 1	9 12	31 30	17 4	5 Р.м. 1 р.м.
May	2086	43	$\begin{array}{ll}13 & 24 \\ 13 & 24\end{array}$	11	117 119	130 130	24 21	$39^{\circ} 0$ $45 \cdot 2$	$27 \cdot 7$ $26 \cdot 3$	1	12	30 25	4 2	1 Р.м.
June	157 153	32	$\begin{array}{rr}13 & 24 \\ 13 & 6\end{array}$	12	119 127	130	21 8	49.2 49.0	35.5	26	8	30	14	4 P.M.
Jugu Aust	153 227 6	30 52	$\begin{array}{rr}13 & 6 \\ 12 & 24\end{array}$	4	126	138	18	$47 \cdot 4$	$37 \cdot 3$	26	7	22	31	4 P.M.
September ..	12924	36	110	5	111	124	2	$46 \cdot 6$	33.5	30	9	27	7	10 А.m.

* Registered by the sunshine-recorder.
+ As indicated by a Robinson's anemograph, 70 feet abore the general surface of the ground.

Table IV.
Summary of Sun-spot Observations made at the Kew Observatory.

APPENDIX III.

List of Instruments, Apparatus, \&c., the Property of the Kew Committee, at the present date out of the custody of the Superintendent, on Loan.

To whom lent.	Articles.	Date of loan.
G. J. Symons, F.R.S.	Old Kew Thermometer Screen	1868
	Portable Transit Instrument.	1869
The Science and Art	The articles specified in the list in the Annual	1876
Department, South Kensington.	Report for 1876, with the exception of the Photo-Heliograph, Pendulum Apparatus, Dip-Circle, Unifilar, and Hodgkinson's Actinometer.	
Dr. T. Thorpe, F.R.S.	Three Open Scale Standard Thermometers, Nos. 561, 562, and 563.	1879
	Tripod Stand	1883
Major Herschel, R.E., H.R.S.	Invariable Pendulums, Nos. 1821, 4, and 11, Shelton Clock, R.S. No. 34. Stands, and Accessories.	1881
Mr. R. W. Munro	Standard Straight-edge.	1881
Lieutenant A. Gordon, R.N.	Unifilar Magnetometer by Jones, No. 102, complete, with three Magnets and Deflection Bar. Dip-Circle, by Barrow, one Pair of Needles, and Magnetizing Bars. One Bifilar Magnetometer. One Declinometer. Two Tripod Stands.	1883
Eotroy, R.A., E.R.S	Two Prcels, Magneticul and Meteorological MSS. Yoom the sabine Magnetic Qfice.	1882
Dr. E. van Rijckevorsel	Dip-Circle by Barrow, No. 24, complete, with four Needles, and a Pair of Magnetizing Bars.	1883
Professor W. Grylls Adams, F.R.S.	Unifilar Magnetometer, by Jones, No. 101, complete.	1883
Professor O. J. Lodge	Unifilar Magnetometer, by Jones, No. 106, complete. Barrow Dip-Circle, No. 23, with two Needles, and Magnetizing Bars. Tripod Stand.	1883
Mr. W. F. Harrison .	Condensing lens and copper lamp chimney ..	1883

[^0]: 亡.
 LIABILITIES.

