THE KEW OBSERVATORY,

RICHMOND, SURREY.

1883.

R E P O R T
OF THE
K E W COMMITTEE
FOR THE
Year ending October 31, 1883,

WIth appendices containing resulis of magnetical, METEOROLOGICAL, AND SOLAR OBSERVATIONS MADE AT THE OBSERVATORY.
[From the Proceedings of the Royal Society, 1883.]

> LONDON:

HARRISON AND SONS, ST. MARTIN'S LANE,

1883.

-

Report of the Kew Committee for the Year ending October 31, 1883.

The operations of the Kew Observatory, in the Old Deer Park, Richmond, Surrey, are controlled by the Kew Committee, which is constituted as follows:

Mr. De La Rue, Chairman.

Captain W. de W. Abney, K.E.

Prof. W. G. Adams.
Capt. Sir F. Evans, K.C.B.
Prof. G. C. Foster.
Mr. F. Galton.

Vice-Adm. Sir G. H. Richards, C.B.

The Earl of Rosse.
Mr. R. H. Scott.
Lieut.-General W. J. Smythe.
Lieut.-Gen. R. Strachey, C.S.I: Mr. E. Walker.

The Committee regret to announce the decease of their venerable Chairman, the late Sir E. Sabine, K.C.B., who died on the 26th of June at the very advanced age of ninety-four years and eight months. Sir Edward was one of the chief promoters of the Observatory, and took a leading part in its direction from first its establishment as a Physical Observatory in 1841. Up to within a few weeks of his death he was constant in his inquiries after its condition, although for the last eight years he had been prevented by infirmity from taking an active part in the meetings of its Committee.

The instruments employed for the absolute observations of terrestrial magnetism, as well as several less important pieces of apparatus used in the regular work of the Observatory, were originally provided by Sir E. Sabine.

To speak of that branch of their late Chairman's scientitic work, with which the Kew Committee has been more particularly concerned, they may say that, in their opinion, the science of terrestrial magnetism owes more to Sir Edward Sabine than to any man who ever stadied it, Gauss alone perhaps excepted.

The work at the Observatory may be considered under six heads:-

1st. Magnetic observations.
2nd. Meteorological observations.

3rd. Solar observations.
4th. Experimental, in connexion with any of the above departments.
5 th. Verification of instruments.
6th. Miscellaneous.

I. Magnetic Observations.

The Magnetographs have been in constant operation throughout the year.

The values of the ordinates of the different photographic curves determined in January were as follows :-

$$
\text { Declination : } 1 \text { inch }=0^{\circ} 22^{\prime} \cdot 04 . \quad 1 \mathrm{~mm} .=0^{\circ} 0^{\prime} 87
$$

Bifilar, January 9, 1883, for 1 inch $\delta \mathrm{H}=0.0221$ foot grain units.

Balance, January 12, 1883 ," 1 inch $\delta \stackrel{V}{V}=0.0376$ foot

It having been decided to attempt to re-adjust the Bifilar and Vertical Force instruments so as to bring their scales more closely in accordance with the generally adopted values, the necessary alterations were made in the adjustments, and on redetermining the scale values on January 17th the following results were obtained:-

$$
\begin{aligned}
\text { Bifilar for } 1 \text { inch } \delta \mathrm{H} & =0.0277 \text { foot grain units. } \\
\text { " } 1 \mathrm{~mm} . " & =0.0005 \mathrm{~mm} \text {. mgr. units. } \\
\text { Balance " } 1 \mathrm{inch} \delta \mathrm{~V} & =0.0261 \text { foot grain units. } \\
" 1 \mathrm{~mm} . " & =0.0005 \mathrm{~mm} \text {. mgr. units. }
\end{aligned}
$$

The tabulation of the traces of the three elements was temporarily suspended at the conclusion of the year for which the observations were promised to the International Polar Commission. Atiention is now being devoted to the revision and reduction of the results.

A common gas-jet has been substituted in the Vertical Force instrument with advantage for that formerly employed, but on trial the results obtained by a similar substitution in the case of the other instruments were not satisfactory, and the old burners with chimneys are retained for the present.

Gelatino-bromide paper has been used for all three instruments with great success and economy of time throughout the whole year, and an examination of the curves shows that not a single hour's trace has been lost since its adoption, from purely photographic causes, rapid and minute movements of the needles being recorded.

Several magnetic storms have been observed, the principal being that of November 17th and 18th, 1882, which, together with its accompanying aurora and meteor, excited considerable attention.

Owing to long usage the points of the Dip-needles Nos. 1 and 2 of Circle No. 33, used for monthly observations, were very blunt; they were accordingly re-ground by Mr. Dover in August, and the axles at the same time repolished.

The Committee have to acknowledge with thanks the receipt of photographic copies of magnetic curves from the Observatory at Batavia.

The magnetic instruments have been studied, and a knowledge of their manipulation obtained by-

> Dr. Joberck. Lieutenant A. P. Pinheiro.
> Dr. O'Reilly.

Information on matters relating to terrestrial magnetism, and various data, have been supplied to Dr. Buys Ballot, Padre Denza, the Rev. F. Howlett, M. l'Abbé Philippe, and others.

The Unifilar Magnetometer returned by Rev. S. J. Perry, F.R.S., on his arrival in this country from Madagascar was lent to Professor W. G. Adams, F.R.S., for use in the Wheatstone Laboratory, King's College, London. Another Unifilar and Dip-circle have been lent to Professor O. Lodge, for use in the University College, Liverpool.
A Dip-circle with bar-magnets has been lent to Dr. E. van Rijekevorsel for use in an expedition to Central America.
The monthly observations with the absolute instruments have been made as usual, and the results are given in the tables forming Appendix I of this Report.
The following is a summary of the number of magnetic observations made during the year:-

$$
\text { Determinations of Horizontal Intensity } 35
$$

" \quad Dip $\ldots . ~$	123	
".	Absolute Declination	29

At the request of the Rev. S. P. Ferrari, of the private astronomical observatory on the Janiculan Hill, Rome, the superintendent designed a set of Magnetometers, for eye observations, on a new pattern, much less costly than the Kew magnetographs.
They were erected in the Verification House, and after a satisfactory trial, were dismounted and forwarded to M. l'Abbé Philippe for the Observatory at Lyons.
A set of Magnetographs has been ordered on behalf of the American Government, and is now in process of construction.

II. Meteorological Observations.

The several self-recording instruments for the continuous registration respectively of atmospheric pressure, temperature, and humidity,
wind (direction and velocity), sunshine, and rain, have been maintained in regular operation throughout the year. A summary of these observations is given in Appendix II.

Owing to the necessity of delaying the constraction of the new tabulating scales for the wet bulb thermograph until a somewhat lengthened series of observations had been obtained, the work of tabulation became some months in arrear. These, however, have now been worked up, and the tabulations are up to date.

The standard eye observations for the control of the automatic records have been duly registered during the year, together with the daily observations at 0 h .8 m . P.M. in connexion with the W ashington synchronuus system.

Owing to the high quality of the photographic records, the Committee considered that the maintenance of the noon eye observation in addition to that at 0 h .8 m . was superfluous, and accordingly it was discontinued on July 1st.

The tabulation of the meteorological traces has been regularly carried on, and copies of these, as well as of the eye observations, with notes of weather, cloud, and sunshine have been transmitted weekly to the Meteorological Office.

The following is a summary of the number of meteorological observations made during the past year :-

Readings	standard barometer	1825
",	dry and wet thermometers	3650
"	maximum and minimum thermometers	730
"	radiation thermometers	3599
,	rain gauges	730
Cloud and	weather observations	2176
Measurem	nts of barograph curves	9046
,"	dry bulb thermograph curves..	9786
"	wet bulb thermograph curves.	11180
"	wind (direction and velocity).	17410
"	rainfall curves	864
"	sunshine traces	2252

In compliance with a request made by the Meteorological Council to the Kew Committee, the Observatories at Aberdeen, Stonyhurst, and Valencia, have been visited and their instraments inspected by Mr. Baker during his vacation.

With the concurrence of the Meteorological Council, weekly abstracts of the meteorological results have been regularly forwarded to, and published by "The Times," "The Illustrated London News," "The Torquay Directory," and "The Torquay Standard," and data have been supplied to the Council of the Royal Meteorological Society, the
editor of "Symons's Monthly Meteorological Magazine," the Secretary of the Institute of Mining Engineers, Messrs. Banner and Co., the late Mr. Greaves, and Messrs. Gwilliam, Mawley, Rowland, Dr. Radcliffe, and others. The cost of these abstracts is borne by recipients.

Tracings of rain-gauge curves have been supplied to Mr. Symons for the months of October, November, and December, 1882.
Electrograph.-This instrument has been in continuous action through the year.

In May it was dismounted from the 16 th to the 20 th, to allow of structural alterations in connexion with the new stairs.

The tabulation of the curves is at present in arrear, not having been completed beyond February 28, 1882.
The portable Thomson Electrometer has not been employed in systematic observations during the year, but has had its scale value experimentally determined, at Mr. De La Rue's laboratory, for tensions ranging from -1240 to +1030 volts.
Information as to the working of Atmospheric Electrometers has been given to Professor Atwater, of Middleton, U.S.A., Dr. H. B. Baker, Lansing, U.S.A., and M. Leon Descroix, of Paris.

III. Solar Observations.

The sketches of Sun-spots as seen projected on the photoheliograph screen, have been made on 214 days, in order to continue Schwabe's enumeration, the results being given in Appendix No. II. The sun's surface was found to be free from spots on seven of those days.

Solar Negatives.-The correction to the area-measurements for foreshortening, which, at the date of the last report, had not been applied to the reductions of sun-spot observations for the last two years of the series, has since been made under Mr. De La Rue's direction.

The whole series is at the Royal Society, and is now being revised and arranged for reference by Mr. Marth, on behalf of the Council of the Royal Society, who made a grant of money for that purpose.

With the view of utilising the instrument in the transit of Venus of December 5, 1882, the Committee obtained the services of Mr. Reynolds, so long associated with Astronomical Photography, who made every preparation for taking a series of pictures of the transit. The adverse atmospheric conditions which prevailed at the time of the phenomenon, however, prevented any results being obtained.

Dr. Terby, of Louvain, requested a number of photographs, which were selected from the Kew series and sent him on loan. He has since returned them to the Observatory, having embodied the results
of his investigations in a work entitled "Sur l'Existence et sur la Cause d'une Périodicité mensuelle des Anrores Boréales."

Three typical negatives have also been selected, in reply to Professor Pickering's request, and forwarded to the Harvard College Observatory, to be deposited in the collection of astronomical photographs being formed there by the Director.

At the request of Professor Balfour Stewart, some measurements were made by Mr. Whipple and Mr. McLaughlin, in the Library of the Royal Astronomical Society, Burlington House, of Carrington's original sun-spot drawings, with a view of checking the accuracy of the values of solar-spotted areas determined at the Observatory in 1866, and published by Messrs. De La Rue, Stewart, and Loewy in their "Researches on Solar Physics," second series. The work has not yet been completed.

Transit Observations.-One hundred and fourteen observations have been made of sun-transits, for the purpose of obtaining correct local time at the Observatory; 224 clock and chronometer comparisons have also been made.

Shelton's clock, K.O., has been used as the standard timepiece of the Observatory.

IV. Experimental Work.

Actinometry.-Observations have been made on favourable occasions with the Stewart actinometer on the Observatory lawn, and the results communicated to the Meteorological Council, who defray the cost they entail. Owing to the rarity at Kew of the occurrence of periods of perfectly clear sky sufficient in duration for a satisfactory experiment with Stewart's apparatus, the Superintendent has instituted inquiries with a view to obtaining one of Professor Langley's bolometers for comparison with it. :

Solar Radiation Thermometers.-With a view of investigating the causes of the differences in the readings of black balb thermometers in vacuo, the Superintendent obtained on loan from Messrs. Negretti and Zambra six of these instruments constructed according to his suggestions. They were after verification arranged on a stand on the Observatory lawn beside the Observatory standard of reference, and read daily during the summer months. The observations have been discussed, and the results indicate that the discrepancies observed in the readings of this class of instrument are in part to be attributed to want of uniformity in the sizes of the thermometer bulbs, and also in the amount of lampblack with which they are covered.

Photo-Nephograph.-At the request of the Meteorological Council, a series of experiments have been commenced with Captain Abney's Photo-Nephograph, described in the Report of the Council for 1881.

Two of the cameras, with their tripod stands, have been received at the Observatory, a base line of 180 yards has been marked off on the level path leading across the park from the Observatory, and a carriage for conveying the battery and reels of wire constructed.
A. code of signals has been arranged to enable the observers at the cameras to work in accordance with each other, and several successful pairs of cloud negatives have been obtained, both on the plates prepared by Captain Abney and also on gelatino-bromide paper.
No steps have yet been taken towards the permanent installation of the apparatus at the Observatory.

Water Surface Temperature.-The observations of the maximum and minimum temperature of the surface water of the pond which were taken for the late Mr. Greaves, C.E., daily at 9 A.m., were discontinued at his request on May 1 , and the results forwarded to him.
Mr. Greaves applied to the Committee for permission to excavate a tank in the ground attached to the Observatory, in order that continuous registration of water surface temperature might proceed in the immediate neighbourhood of the thermograph. The Committee, however, were unable to afford him the facilities he desired, the time of the Observatory staff being fully occupied with their existing duties.
Nocturnal Radiation.-The experiments on the fall of temperature of the lower layers of the atmosphere at sunset, instituted at the suggestion of Professor Tyndall, were terminated on February 16, on the resignation of the assistant by whom the readings of the thermometers were made, the grant devoted by the Meteorological Council to the purpose being almost expended.

Graphic Reductions.-The Superintendent, having made some experiments on the deduction of mean values, \&c., from curves by a graphic method, based on Mr. Galton's composite portraiture, has communicated a paper on the subject to the Royal Meteorological Society, which has been published in the "Quarterly Journal," vol. ix.

Artificial Horizon.-Some experiments have been made with a view of testing an attachment to sextants answering the purpose of an artificial horizon, which has been invented by Mr. T. Tennent, of San Francisco, and constructed by Messrs. Elliott Brothers. The results appear to indicate that the invention will prove a useful addition to a sextant under certain conditions.

Watch-rating.-The Committee, having decided to make a trial of a system of watch-rating for the public, have granted $£ 100$ for the preliminary expenses. In accordance with a scheme prepared by the Superintendent, they have fitted up at the Observatory a firstclass burglar- and fire-proof safe for the safe custody of the watches, and with a view to the obtaining of star-transits, have permitted Mr. Whipple to fit up a temporary transit-house at his residence in the
neighbouring town of Richmond, where be has erected a Sheepshanks 30 -inch transit (No. 27) lent by the Royal Astronomical Society. The apparatus used for determining the temperature correction of aneroids is being fitted up to receive the watches for rating them at extreme temperatures, and arrangements are in progress for their reception and delivery at the Meteorological Office by Mr. Strachan, and at the Horological Institute, Northampton Square, by Mr. Britten, the Secretary.

A circular has been drafted, which will be issued to watchmakers on the completion of these arrangements, and it is hoped that operations will be commenced early in the new year.

Pendulum Experiments.-Professor C. S. Peirce, of the United States Coast Survey, who made a series of pendulum observations at Kew and elsewhere in 1876, visited the Observatory in July last, and made a subsidiary series of experiments with a view of determining the flexure of his stand when on the Kew piers, using for the purpose an instrument termed a " noddy."

Major J. E. Herschel, R.E., F.R.S., and Mr. Chaney, of the Standards Department, visited the Observatory and witnessed some of his experiments.

V. Verification of Instruments.

The following magnetic instruments have been verified, and their constants have been determined :-

6 Unifilar Magnetometers for Elliott Brothers, London.
2 Dip Circles for Casella, London.
1 Dip Circle for Dover, Charlton.
There have also been purchased on commission and verified :-
A Unifilar Magnetometer for Professor Brioschi, Naples.
A Unifilar Magnetometer for Professor Ferrari, Rome.
A Dip Circle for Professor Thalén, Upsala.
A Dip Circle for Professor Ferrari, Rome.
A complete set of Magnetometers for the Lyons Observatory France.

Two Dip Circles are at present undergoing examination :-
The number of meteorological instruments verified continues still to insrease, having been in the past year as follows :-

Barometers,	Standard	45
	Marine and Station	114
Aneroids.		52
	Total.	211

Thermometers, ordinary Meteorological		1165
"	Standard	116
"	Mountain	39
"	Clinical	7255
"	Solar radiation.	35
	Total. .	8610

Besides these, 51 Deep-sea Thermometers have been tested, 2 of which were subjected in the hydraulic press, without injury, to pressures exceeding three and a half tons on the square inch, and 78 Thermometers have been compared at the freezing-point of mercury, making a total of 8739 for the year.
Duplicate copies of corrections have been supplied in 17 cases.
The number of instruments which were rejected on account of excessive error, or which from other canses did not record with sufficient accuracy, was as follows:-

Seven Standard Thermometers have also been calibrated and divided, and supplied to societies and individuals during the year.
A Barograph and Thermograph have been examined, and had their scale values determined for the Hong Kong Observatory, also a Barograph for the Japanese Hydrographic Department, and a large Anemograph for the Zi-Ka-Wei Observatory.

The following miscellaneous instruments have also been verified :-
Hydrometers 59
Anemometers 12
Rain Gauges 9
Theodolite 1
Sextants. 55
Index and Horizon Glasses, unmounted 111
Dark Glasses, unmounted 277
Prismatic Compasses. 2
Marine Telescopes 3

There are at present in the Observatory undergoing verification, 27 Barometers, 932 Thermometers, 1 Anemometer and 4 Sextants, and a self-registering Aneroid for the Meteorological Council.

The Committee have recently revised the regulations for the verification of graduated instruments, fixing a linear value equal to 0.01 inch or 0.25 millim. as the limit to which corrections are to be assigned to scales intended to be read by the unassisted eye.

With a view of facilitating the examination of the dark glasses and mirrors of sextants, of which a large number are now tested and marked for makers before mounting in frames, the Superintendent has devised a special apparatus for the purpose, an illustrated description of which appeared in the "Proceedings of the Royal Society" (vol. 35, p. 42).

Redeterminations have been made of the angles between the collimators of the Cooke sextant apparatus, which show that they retain their positions with a satisfactory degree of constancy.

The Committee have been offered the loan of the apparatus employed by Mr. J. M. Crafts, of Paris, for the comparison of mercurial thermometers at high temperatures, but have not yet been able to avail themselves of his offer.

Standard Barometers.-From time to time comparisons have been made between the two Welsh Standard Barometers and Newman No. 34, the working Standard of the Observatory, and their relative values have been found to remain unchanged.

Mr. F. Waldo, of the United States Signal Department, being instructed by Major-General W. B. Hazen, Chief Signal Officer, United States of America, to compare the Standard Barometers of their Department with the European Standards, visited the Observatory in July, and made a lengthened comparison of two Standards by Fuess, which he brought with him, with the Observatory Working Standard, Newman No. 34. The results of his comparison have not yet been communicated to the Committee, but Dr. Chistoni, of the Italian Meteorological Service, having published in the "Annale della Meteorologia" an account of the results of his comparisons of Kew and other Standard Barometers, the Committee desire to publish an abstract of that part of his paper which more especially refers to the Observatory Standard.

Taking the absolute standard barometer of St. Petersburg as the basis for his comparisons, Dr. Chistoni finds that the corrections of the Continental standards, referred to this instrument, are as follows :-

Barometer.	Millim.	In.
Hamburg, Fuess, No. 9	-0.35	-0.014
, " No. 5	-0.14	-0.006
" ${ }^{\prime \prime}$ No. 10.	-0.22	-0.009
Berlin, Old Standard, by Greiner.........	-1 16	-0.046
Copenhagen, Jünger.	-0.11	-0.004
Rome, Deleuil, No. 6.................. .	-0.22	-0.009
Stockholm, Pistor and Martins, No. 579...	$0 \cdot 00$	$0 \cdot 000$
Vienna, Pistor..........................	-0.17	-0.007

His first comparison with the Kew Standard was an indirect one,
made by means of a Negretti and Zambra's Standard, No. 1042, which he found at Pesaro, and which had been compared at Kew in 1877. By means of an indirect comparison of this instrument with the Standard, Deleuil No. 6, at Rome, he found the correction of the latter, so referred to the Kew Standards, to be -0.23 millim. (-0.009 inch). Subsequently, Professor Tacchini conveyed another barometer directly to Kew, and this when compared with the Roman Standard, indicated the difference between the two instruments to be -0.19 millim. (-0.008 inch). From these two comparisons he assumes the true correction of Deleuil No. 6 to be -0.21 millim. (-0.008 inch). Having already determined the correction of that instrument referred to the St. Petersburg Standard to be $-0 \cdot 22$ millim. (-0.009 inch), he concludes that the two absolute Standard Barometers of Kew and St. Petersburg perfectly agree, and taking into account the possible error of reading the instrument at Rome, "they cannot differ between themselves more than half the tenth of a millim. (0.002 inch)." With the absolute Standard of the Collège de France he found the correction of Deleuil, No. 6 to be -0.18 millim. (-0.007 inch). Hence he also concludes that the absolute Standard Barometer of the Collège de France perfectly agrees with the absolute standards of Kew and St. Petersburg within the limits of the half-tenth of a millim. (0.002 inch).

VI. Miscellaneous.

Waxed Papers, \&c., supplied.-Waxed paper has been supplied to the following Observatories :-

Colaba, Toronto, Mauritius, and the Meteorological Office.
Anemograph Sheets have been sent to Mr. Pogson, Madras Observatory.
Blank Magnetic Observation Forms have been supplied to Professor Brioschi, Naples.

Two glass tabulating scales for measuring magnetograph curves were constructed for the Toronto Observatory, and five various glass scales for the Hong Kong Observatory.

Two Additional Divided Plates for the Sun Picture Micrometer have been supplied to the Mauritius Observatory.

A Thomson Quadrant Electrometer was procured from the maker, and after examination, forwarded to Senhor Capello, of Lisbon. A portable Thomson Electrometer has also been purchased, and had its scale value determined for M. le Directeur de l'İnstitut Technique et Nautique de Bari, Italy.

Magnetic Survey of Great Britain and Ireland.-The attention of the Committee having been called to the fact that twenty-four years have elapsed since the surveys of Sabine and Welsh were completed, and
that a new survey is now desirable, they have requested the Hydrographer (Sir F. Evans), Professors W. G. Adams and G. Carey Foster to act as a sub-committee with a view of recommending the course to be adopted for the carrrying out of the survey.

A number of instruments of interest were exhibited at the Fourth Annual Exhibition of the Royal Meteorological Society, which was devoted to meteorological instraments used by explorers and travellers, held in the rooms of the Institation of Civil Engineers in March last.

Library.-During the year the Library has received, as presents, the pablications of -

27 English Scientific Societies and Institutions, and
88 Foreign and Colonial Scientific Societies and Institutions.
153 Volumes of daplicates of works on Astronomy, Terrestrial Magnetism, and Meteorology, have been presented to the Library of the newly established Observatory at Hong Kong.

Observatory and Grounds.-The buildings and grounds have been kept in order throughout the year. A new staircase leading from the ground to the first floor has been constructed; a new chimney fitted to the barometer-room stove, and the exterior of the building maintained in repair by Her Majesty's Commissioners of Works, \&c.

A temporary vestibule has been put up in the Entrance Hall.
Owing to the giving way of a gas-pipe sapport attached to the Electrograph, the building narrowly escaped being set on fire on the night of March 9th; the housekeeper fortunately being near at the time, the fire was extinguished without damage being done. Steps have been taken to prevent a recurrence of the accident.

Personal Establishment.
The staff employed is as follows :-
G. M. Whipple, B.Sc., Supęrintendent.
T. W. Baker, Chief Assistant and Magnetic Observer.
J. Foster, Verification Department.
H. McLaughlin, Librarian and Accountant.
E. G. Constable, Solar Observations and Tabulation of Meteorological Curves.
T. Gunter, Verification Department.
W. Boxall, Photography.
E. Dagwell, Office duties.
$\left.\begin{array}{l}\text { E. Coates \}} \\ \text { C. Henley }\end{array}\right\}$ Verification Department.
M. Baker, Messenger and Care-taker.

During the Spring, Mr. Whipple met with an accident which
entailed his absence from the Observatory for three months on a medical certificate, during the interval Mr. R. H. Scott undertook the general supervision of its affairs, Mr. T. W. Baker, as chief assistant, conducting the work at the Observatory.
Mr. F. G. Figg having been appointed first assistant in the Hong Kong Observatory, left at the end of June, and Mr. T. W. Baker undertook the duties of Magnetic Observer, Mr. Foster taking charge of the Meteorological Instruments Verification Department.

Mr. Dawson, messenger and caretaker, resigned in March on account of ill-health. Messrs. C. Taylor and S. Henley have also resigned. H. Clements was temporarily re-engaged in the Verification Department for six weeks.
Abstract. Kew Observatory Receipts and Payments Account from November 4, 1882, to November 1, 1883.

APPENDIX I.

Magnetic Observations made at the Kew Observatory, Lat. $51^{\circ} 28^{\prime \prime} 6^{\prime \prime} N$.
Long. $0^{\mathrm{h}} 1^{\mathrm{m}} 15^{\mathrm{s}} 1 W^{\prime}$, for the year October 1882 to September 1883.
The observations of Deflection and Vibration given in the annexed Tables were all made with the Collimator Magnet marked K C 1, and the Kew 9 -inch Unifilar Magnetometer by Jones.

The Declination observations have also been made with the same Magnetometer, Collimator Magnets N D and NE being employed for the purpose.
The Dip observations were made with Dip-circle Barrow No. 33, the needles 1 and 2 only being used; these are $3 \frac{1}{2}$ inches in length.

The results of the observations of Deflection and Vibration give the values of the Horizontal Force, which, being combined with the Dip observations, furnish the Vertical and Total Forces.

These are expressed in both English and metrical scales-the unit in the first being one foot, one second of mean solar time, and one grain; and in the other one millimetre, one second of time, and one milligramme, the factor for reducing the English to metric values being $0 \cdot 46108$.

By request, the corresponding values in C.G.S. measure are also given.
The value of $\log \pi^{2} \mathrm{~K}$ employed in the reduction is 1.64365 at temperature $60^{\circ} \mathrm{F}$.

The induction-coefficient μ is $0 \cdot 000194$.
The correction of the magnetic power for temperature t_{o} to an adopted standard temperature of $35^{\circ} \mathrm{F}$. is

$$
0.0001194\left(t_{0}-35\right)+0.000,000,213\left(t_{0}-35\right)^{2}
$$

The true distances between the centres of the deflecting and deflected magnets, when the former is placed at the divisions of the deflectionbar marked 1.0 foot and 1.3 feet, are 1.000075 feet and 1.300097 feet respecctively.

The times of vibration given in the Table are each derived from the mean of 12 or 14 observations of the time occapied by the magnet in making 100 vibrations, corrections being applied for the torsion-force of the suspension-thread subsequently.
No corrections have been made for rate of chronometer or arc of vibration, these being always very small.
The value of the constant P, employed in the formala of reduction $\frac{m}{\mathrm{X}}=\frac{m^{\prime}}{\overline{\mathrm{X}}^{\prime}}\left(1-\frac{\mathrm{P}}{r_{0}^{2}}\right)$, is -0.00109 .

In each observation of absolute Declination the instrumental readings have been referred to marks made upon the stone obelisk erected 1,250 feet north of the Observatory as a meridian mark, the orientation of which, with respect to the Magnetometer, was determined by the late Mr. Welsh, and has since been carefally verified.
The observations have been made and reduced by Messrs. F. G. Figg and T. W. Baker.

Observations of Deflection for Absolute Measure of Horizontal Force.

Month.	G. M. T.	Distances of Centres of Magnets.	Temperature.	Observed Deflection.	$\log _{\overline{\mathbf{x}}}^{m}$ Mean.
$1882 .$ October .	d. h. m. 261239 P.m.	foot.			9-12609
		$1 \cdot 3$		155828 658	
	235 "	1.0	$51 \cdot 7$	152712	
		$1 \cdot 3$	65810	
November.....	281241 Р.м.	1.01.3	44.9...	$\begin{array}{r} 152743 \\ 65826 \end{array}$	9•12583
	233 "	1.0	$45 \cdot 4$	152730	
	201232 p.m.	$1 \cdot 0$		
December......			$37 \cdot 9$	$\begin{array}{rrrr}15 & 28 & 1 \\ 6 & 58 & 40\end{array}$	9-12599
$\begin{gathered} 1883 . \\ \text { January............ } \end{gathered}$		1.01.3	$38 \cdot 8$		
			659946 $6 \quad 5922$	
		1.0	$45 \cdot 1$	152710	9•12570
		$1 \cdot 3$		65811	
February	232 "	1.0	$46 \cdot 5$	152721	
		$1 \cdot 3$	$46 \cdot 2$	65818	
	271236 P.м.			152645	9•12527
		1.3	$\because \square$	6581	
March	227 "	1.0 1.3	$49 \cdot 1$	1525 657 69	
	29 1 1 P.M.	1.0	$53 \cdot 8$	$\begin{array}{r}15 \\ 6 \\ 6 \\ 57 \\ \hline 150\end{array}$	9•12554
		13			
	240 "	1.0	$55 \cdot 1$	152459	
		1.0	.	65728	
April	251239 P.m.		$58 \cdot 5$	15262465740	9-12549
		. $1 \cdot 3$			
	237 "	1.0	$60 \cdot 6$	152310	
	24.1253 P.M.	1.0	65635	
May			$77 \cdot 1$	15202665512	9•12457
		1.3			
	244 "	1.0 1.3	$80 \cdot 5$	$\begin{array}{rrr}15 & 19 & 12 \\ 6 & 54 & 41\end{array}$	
July	$12 \quad 350$ P.M.	$1 \cdot 0$	$67 \cdot 4$	15193065513	9•12423
		$1 \cdot 3$	$70 \cdot 9$		
	$1312 \quad 2 \Rightarrow$	1.01.3			
				
August	11146 A.m.	$1 \cdot 0$	$67 \cdot 9$	156226 2	9-12459
		1.3 1.0			
	332 P.M.	1.0 1.3	$73 \cdot 9$	151949 65517	
August	221231 P.M.	1.0	$78 \cdot 0$	151935654	9•12431
		$1 \cdot 3$			
	223 "	1.0	$78 \cdot 7$	15196	
		$1 \cdot 3$	65430	
October.	$\begin{array}{rrrr} 1 & 12 & 42 & \text { Р.м. } \\ 2 & 18 & & \end{array}$	$\begin{aligned} & 1.0 \\ & 1.3 \\ & 1.0 \\ & 1.3 \end{aligned}$	$57 \cdot 0$	$\begin{array}{r}654 \\ 15 \\ 6 \\ 56 \\ \hline 13\end{array}$	9•12414
			$58 \cdot 1$	15 6 6 $\mathbf{5 6} 929$	

Vibration Observations for Absolute Measure of Horizontal Force.

Month.	G. M. T.	Temperature.	$\left\|\begin{array}{c} \text { Time of } \\ \text { one } \\ \text { Vibration.* } \end{array}\right\|$	$\log m \mathbf{X}$. Mean.	Value of $m . \dagger$
$1882 .$ Octoser		46.9	$\begin{aligned} & \text { secs. } \\ & 4.6500 \end{aligned}$		
	388 Р.м.	$53 \cdot 1$	4.6525	0.30844	$0 \cdot 52151$
November.	28127 P.M.	43.5	$4 \cdot 6517$		
	3 4р.м.	$45 \cdot 4$	$4 \cdot 6498$	$0 \cdot 30824$	$0 \cdot 52123$
December	201150 A.m.	$35 \cdot 7$	$4 \cdot 6478$		
	258 р.м.	38.5	$4 \cdot 6505$	$0 \cdot 30808$	0.52109
$1883 .$ January	261213 Р.м.	$43 \cdot 9$	$4 \cdot 6485$		
	36 р.м.	46.8	$4 \cdot 6507$	0.30848	$0 \cdot 52130$
February	271152 А.м.	45.0	$4 \cdot 6483$		
	337 Р.м.	52.0	$4 \cdot 6502$	$0 \cdot 30875$	$0 \cdot 52121$
March...........	291222 р.м.	52.6	$4 \cdot 6523$		
	315 Р.м.	55.0	$4 \cdot 6497$	0.30873	$0 \cdot 52135$
April.............	251156 A.m.	56.9	$4 \cdot 6566$		
	315 P.m.	$60 \cdot 1$	$4 \cdot 6521$	0.30839	$0 \cdot 52112$
May.	24 12 6p.m.	$76 \cdot 1$	4.6534		
	46 P.м.	84:0	4.6543	0.30989	$0 \cdot 52147$
July..............	$\begin{array}{llll}12 & 2 & 52 & \text { Р.м. }\end{array}$	67.0	$4 \cdot 6518$		
	131238 т.м.	72.6	$4 \cdot 6540$	$0 \cdot 30939$	$0 \cdot 52097$
August	11226 p.м.	$69 \cdot 1$	$4 \cdot 6532$		
	257 р.м.	$73 \cdot 1$	$4 \cdot 6534$	$0 \cdot 30935$	$0 \cdot 52116$
August	221151 A.m.	76.9	$4 \cdot 6575$		
	314 P.m.	78.3	4.6543	$0 \cdot 30930$	0.52095
October...........	11151 A.m.	55.9	$4 \cdot 6542$		
	3 3 Р.м.	57.7	$4 \cdot 6500$	$0 \cdot 30870$	$0 \cdot 52050$

[^0]
Dip Observations.

	G. M. T.		Dip.	号	G. M. T.	哭	Dip.
1882. Oct.		No. 1 2 1 2	North. $\times 840^{\prime} .56$ 41.06 40.75 41.19	$\begin{gathered} 1883 . \\ \text { April } \end{gathered}$		No. 1 2 1 2	$\begin{aligned} & \text { North. } \\ & \text { o } 6739^{\prime} \cdot 37 \\ & 39 \cdot 72 \\ & 39 \cdot 81 \\ & 38 \cdot 40 \end{aligned}$
	Mean.		$6740 \cdot 89$		Mean.	$6739 \cdot 32$
Nov.		1 2 1 2	$6741 \cdot 56$ 40.56 41.06 40.56	May		1 2 1 2	$\begin{array}{r} 6741 \cdot 55 \\ 41 \cdot 49 \\ 42 \cdot 60 \\ 39 \cdot 74 \end{array}$
	Mean. .	. \cdot	$6740 \cdot 93$		Mean.	\ldots	$6741 \cdot 34$
Dec.	$\begin{array}{ccc} 22 & 2 & 58 \text { р.м. } \\ & 2 & 58 \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r}67 \\ \hline 41 \cdot 28 \\ \hline 4.40\end{array}$	June	27 $27 \begin{array}{llll} & 15 & \text { P.м. } \\ & 2 & 52 & \\ 28 & 2 & 49 & " \\ & 3 & 26 & \prime \prime\end{array}$	1 2 1 2	$\begin{array}{r} 6741 \cdot 62 \\ 39 \cdot 22 \\ 40 \cdot 12 \\ 37 \cdot 91 \end{array}$
					Mean. .	\cdots	673972
$\begin{aligned} & 1883 . \\ & \text { Jan. } \end{aligned}$		1 2 1 2	$\begin{array}{r} 6741 \cdot 81 \\ 40 \cdot 25 \\ 41 \cdot 50 \\ 39 \cdot 47 \end{array}$	July		1 2 1 2	$\begin{array}{r} 6740 \cdot 25 \\ 40 \cdot 18 \\ 38 \cdot 28 \\ 40 \cdot 90 \end{array}$
	Mean.	.	$6740 \cdot 76$		Mean.	$6739 \cdot 90$
Feb.	$\begin{array}{cccc}23 & 4 & 1 & 1 \text { р.м. } \\ & 4 & 2 \\ 26 & 3 & 13 & \prime \prime \\ & 3 & 12 & \prime \prime\end{array}$	1 2 1 2	$\begin{array}{r} 6742 \cdot 50 \\ 41 \cdot 18 \\ 40 \cdot 50 \\ 40 \cdot 75 \end{array}$	Aug.		1 2 1 2	$\begin{array}{r} 6740 \cdot 46 \\ 39 \cdot 78 \\ 39 \cdot 19 \\ 39 \cdot 65 \end{array}$
	Mean.	$6741 \cdot 23$		Mean.	...	6739.77
Mar.		1 2 1 2	$\begin{array}{r} 6741 \cdot 21 \\ 40 \cdot 06 \\ 40 \cdot 93 \\ 39.81 \end{array}$	Sept. Oct.	$\begin{array}{rrrr} 29 & 2 & 56 & \text { P.M. } \\ 2 & 56 & " \\ 2 & 2 & 44 & " \\ 2 & 45 & ", \end{array}$	1 2 1 2	$\begin{array}{r} 6740 \cdot 94 \\ 42 \cdot 00 \\ 42 \cdot 62 \\ 40 \cdot 15 \end{array}$
	Mean..		67 40:50		Mean.	\cdots	$6741 \cdot 43$

Month.	Declination.	Magnetic Intensity.								
	Mean of Observations.	English Units.			Metric Units.			C. G. S. Measure.		
		$\left\|\begin{array}{c} \text { X, or } \\ \text { Horizontal } \\ \text { Force. } \end{array}\right\|$	\mathbf{Y}, or Vertical Force.	Total Force.	X, or Horizontal Force.	Y, or Vertical Force.	Total Force.	\mathbf{X}, or Horizontal Force.	Y, or Force.	Total Force.
$\begin{gathered} 1882 . \\ \text { October . } \end{gathered}$	West. 옹 $43 \quad 37$	3-9009	9-5028	$10 \cdot 2721$	$1 \cdot 7987$	4•3816	$4 \cdot 7363$	$0 \cdot 1799$	$0 \cdot 4382$	$0 \cdot 4736$
November	18413	3-9012	$9 \cdot 5036$	$10 \cdot 2733$	$1 \cdot 7988$	4-3820	$4 \cdot 7369$	$0 \cdot 1799$	$0 \cdot 4382$	$0 \cdot 4737$
December ..	183951	3•9025	$9 \cdot 5100$	$10 \cdot 2795$	$1-7994$	$4 \cdot 3849$	$4 \cdot 7397$	0-1799	$0 \cdot 4385$	$0 \cdot 4740$
January	18381	$3 \cdot 9029$	9-5065	$10 \cdot 2766$	$1 \cdot 7996$	4.3833	$4 \cdot 7384$	$0 \cdot 1800$	$0 \cdot 4383$	0.4738
February......	183851	3-9061	9-5179	$10 \cdot 2880$	$1 \cdot 8010$	$4 \cdot 3885$	$4 \cdot 7438$	$0 \cdot 1801$	$0 \cdot 4388$	$0 \cdot 4744$
March	184036	3-9047	9-5089	$10 \cdot 2795$	$1 \cdot 8004$	4.3844	$4 \cdot 7397$	$0 \cdot 1800$	$0 \cdot 4384$	$0 \cdot 4740$
April	18409	3-9035	$9 \cdot 4964$	$10 \cdot 2674$	$1 \cdot 7998$	$4 \cdot 3787$	$4 \cdot 7341$	$0 \cdot 1800$	$0 \cdot 4379$	$0 \cdot 4734$
May..........	183544	3-9144	$9 \cdot 5390$	10:3107	$1 \cdot 8048$	4-3983	$4 \cdot 7541$	$0 \cdot 1805$	$0 \cdot 4398$	$0 \cdot 4754$
June .	184046	$3 \cdot 9136$	$9 \cdot 5245$	$10 \cdot 2972$	$1 \cdot 8045$	4-3916	4.7479	0-1804	$0 \cdot 4392$	$0 \cdot 4748$
July..........	185023	3-9118	9-5214	$10 \cdot 2937$	$1 \cdot 8037$	$4 \cdot 3902$	$4 \cdot 7462$	$0 \cdot 1804$	$0 \cdot 4390$	$0 \cdot 4746$
August	18455	3.9128	$9 \cdot 5230$	$10 \cdot 2953$	1-8041	$4 \cdot 3909$	$4 \cdot 7470$	0.1804	$0 \cdot 4391$	$0 \cdot 4747$
September . . .	18424	3-9109	9 -5313	10•3024	$1 \cdot 8033$	4-3947	$4 \cdot 7503$	0•1803	0.4395	$0 \cdot 4750$

Report of the Kew Committee.
Meteorological Observations.-Table II.
Kew Observatory.

Months.	Mean amount of cloud ($0=$ clear, $10=$ over cast).	Rainfall*.			Weather. Number of days on which were registered							Wind \dagger. Number of days on which it was								
		Total.	Maximum.	Date.	Rain.	Snow.	Hail.	Thun-derstorms	Clear sky.	Over cast sky.	Gales.	N.	N.E.	E.	S.E.	S.	S.W.	W.	N.W.	Calm.
$1882 .$ October	76	in.	$\mathrm{in}_{0.845}$	15	23		1	.	\cdots	16	1	3	5	1	4	4	7	3	4	7
November	6.9	$2 \cdot 340$	0.375	15	22	1	1	.	.	14	2	3	2	1	.	2	9	8	5	1
$\begin{aligned} & \text { December } \\ & 1883 \text {. } \end{aligned}$	$8 \cdot 4$	$2 \cdot 115$	$0 \cdot 420$	7	19	3	17	.	5	.	1	4	4	8	6	3	5
January..	8.0	$2 \cdot 215$	0.535	15	22	\cdots	\cdots	\cdots	\cdots	23	4	1	3	6	3	2	11	4	1	\cdots
February .	$7 \cdot 3$	$3 \cdot 415$	0.570	10	18	\because	..	.	3	16	3	8	8	2	1	6	12	5	2	3
March ...	$6 \cdot 1$	0.965	$0 \cdot 370$	19	6	7	.	.	4	12	4	8	8	2	,	2	2	3	6	1
April	$6 \cdot 4$	1.620	$0 \cdot 525$	18	7	1	\cdots	.	3	13	.	7	3	5	2	3	3	5	2	8
May	6.2	1.830	$0 \cdot 475$	11	10	4	11	.	7	3	.	3	2	10	3	3	8
June	$6 \cdot 4$	$1 \cdot 165$	$0 \cdot 300$	26	13	\cdots	1	2	4	12	.	3	6	2	3	2	9	2	3	8
July	$7 \cdot 2$	2.030	$0 \cdot 540$	14	14	\cdots	2	5	5	18	\cdots	2	.	2	2	2	12	7	6	4 11
August ..	$6 \cdot 1$	0.930	$0 \cdot 490$	31	11	\cdots	\cdots	1	5	11	1	3 4	5	2	2	1	10 5	9 8	4 1 1	11
September	6.5	3-285	$0 \cdot 775$	29	16	\cdots	. \cdot	.	1	14	1	4	5	1	1	5	5	8	1	7
Totals. .		$27 \cdot 680$			181	12	5	8	24	177	15	46	35	23	25	35	98	63	40	63

Meteorological Observations.-Table III.

Months.	Bright Sunshine.				Maximum temperature in sun's rays. (Black bulb in vacuo.)			Minimum temperature on the ground.			Horizontal movement of the Air.*			
	'Total number of hours recorded.	Percentage of possible sunshine.	Greatest daily record.	Date.	Mean.	Highest.	Date.	Mean.	Lowest.	Date.	Average hourly Velocity.	Greatest hourly Velocity.	Hour.	Date
$1882 .$ October	h. m. $78 \cdot 42$	24	$\begin{array}{rrr}\text { h. } & \mathrm{m} \\ 8 & 36\end{array}$	2	deg. 93	deg. 118	2	deg. 40.8	deg. 25.9	30	miles. 9	miles. 38	1 P.M.	24
November	$75 \cdot 12$	28	612	11	80	104	3	34.0	19.0	18	15	39	$9 \& 10$ р.м.	3
$\begin{array}{cc} \text { December } \\ 1883 . \end{array}$	$23 \cdot 42$	10	56	4	59	79	4	$32 \cdot 8$	18.0	10	10	31	2 A.m.	29
January .	$46 \cdot 18$	18	536	26	66	87	28	$32 \cdot 7$	$20 \cdot 8$	24	13	48	11 A.m.	29
February	$71 \cdot 48$	26	854	23	83	106	28	32.5	20.9	17	12	38	7 \& 8 р.м.	2, 10
March	$141 \cdot 54$	39	1042	25	93	115	31	24.9	$11 \cdot 9$	24.	14	38	$1 \& 2$ P.M.	6, 22
April .	$155 \cdot 36$	38	1048	17	109	128	30	$32 \cdot 1$	$19 \cdot 1$	9	9	29	$9 \& 11$ A.m.	6, 18
May .	205 - 54	43	14.48	24	118	133	31	38.7	$25 \cdot 2$	4	8	30	8 A.M. \& 1 P.M	1, 13
June	$186 \cdot 12$	38	1448	3	125	141	29	44.7	30.6	17	8	27	10 A.m.	3
July	$168 \cdot 12$	35	1236	1	128	137	2	$45 \cdot 3$	$35 \cdot 3$ 36.4	16	9	31	1 P.M.	11
August......	$180 \cdot 18$	40	1236	10	124	135	21	47.4	36.4	20	8	32	2. 3, \& 4 Р.м.	14
September ..	$129 \cdot 00$	34	954.	9	112	127	1	45.8	$33 \cdot 3$	9	9	34	9 А.м.	2

Table IV.
Summary of Sun-spot Observations made at the Kew Observatory.

APPENDIX III.

List of Instruments, Apparatus, \&c., the Property of the Kew Committee, at the present date out of the custody of the Superintendent, on Loan.

To whom lent.	Articles.	Date of loan.
G. J. Symons, F.R.S.	Old Kew Thermometer Screen	1868
	Portable Transit Instrument.	1869
The Science and Art	The articles specified in the list in the Annual	1876
Department, South Kensington.	Report for 1876, with the exception of the Photo-Heliograph, Pendulum Apparatus, Dip-Circle, Unifilar, and Hodgkinson's Actinometer.	
Dr. T. Thorpe, F.R.S.	Three Open Scale Standard Thermometers, Nos. 561, 562, and 563.	1879
	Tripod Stand .	1883
Major Herschel, R.E., F.R.S.	Invariable Pendulums, Nos. 1821, 4, and 11, Shelton Clock, R.S. No. 34. Stands, and Accessories.	1881
Mr. R. W. Munro ..	Standard Straight-edge.	1881
Capt. Dawson, R.A. .	Unifilar Magnetometer by Jones, No. 102, complete, with three Magnets and Deflection Bar.	1882
	Dip-Circle, by Barrow, one Pair of Needles, and Magnetizing Bars. Two Bifilar Magnetometers. One Balance Magnetometer. Two Declinometers. Two Tripod Stands.	
Major-General Sir H. Lefroy, R.A., F.R.S	Two parcels Magnetical and Meteorological MSS. from the Sabine Magnetic Office.	1882
Dr. E. van Rijckevorsel	Dip-Circle by Barrow, No. 24, complete, with four Needles, and a Pair of Magnetizing Bars.	1883
Professor W. Grylls Adams, F.R.S.	Unifilar Magnetometer, by Jones, No. 101, complete.	1883
Mr. E. Mawley	Small Air Meter, with Robinson's Cups	1883
Professor O. J. Lodge	Unifilar Magnetometer, by Jones, No. 106, complete. Barrow Dip-Circle, No. 23, with two Needles, and Magnetizing Bars. Tripod Stand.	1883

[^0]: * A vibration is a movement of the magnet from a position of maximum displacement on one side of the meridian to a corresponding position on the other side.
 $\dagger m=$ magnetic moment of vibrating magnet.

