and latitude 50° S., which was approximately our position at Observatory Bay, we obtain a secular variation of $-2'\cdot3$. We may therefore fairly conclude that $-2'\cdot5$ represents the annual change with considerable accuracy.

Passing from the dip to the total force we find 11.323 to be in British units the mean of three determinations from observations made on shore by H.M.S. 'Erebus' and 'Terror.' If, now, we apply the correction +0.1 for the change from Christmas Harbour to Royal Sound, the result is still somewhat less than the mean of the observations taken near the eastern extremity of Kerguelen during the epoch 1840–45. Adopting 11.423 as the mean value for 1842–45, and 11.143 for 1875, we obtain a secular diminution of 0.0086 in this element of terrestrial magnetism.

The annual increase of the declination will be $+7' \cdot 0$, if we take the approximate value of $32 \cdot 0$ W. from the map of Sir E. Sabine as representing the declination for the epoch 1842-45.

IV. "On the Variations of the Daily Range of the Magnetic Declination as recorded at the Kew Observatory." By BALFOUR STEWART, LL.D., F.R.S., Professor of Natural Philosophy at the Owens College, Manchester. Received February 28, 1877.

1. The daily range of the magnetic declination at any station may perhaps be regarded as a convenient representative of the magnetic activity of the place. For while a thorough discussion of the diurnal magnetic changes must embrace along with the declination the two components of the force, yet, as regards such daily ranges, the declination gives results which are not only more prominent but also more easily procurable and subject to fewer uncertainties than similar ones for the other two elements.

In estimating the daily range of the magnetic declination, as recorded at the Kew Observatory, I have excluded the disturbed observations, conceiving that by so doing a better indication of the true magnetical activity of the place would be obtained than by including them, inasmuch as they follow a very different set of laws from that of the well-known diurnal declination-range. The disturbed observations have been separated by the method of Sir E. Sabine, those being rejected as disturbed for which the measurements on the photographic curve are 0.150 inch either above or below the mean value for that month and hour, one inch denoting 22'04 of angular change. The daily ranges are here given in inches, and they denote the differences between the greatest and least values of each day's hourly tabulations from the curve, disturbances being excluded. I am indebted to the kindness of the Kew Committee for giving me the daily ranges herein discussed, extending from the beginning of 1858 to the end of 1873, thus embracing in all sixteen years' observations.

Range of Maynetic Declination.

A. Annual Variation of Declination-range.

2. The following Table exhibits mean monthly results of the declination-range corresponding to 48 points in the year. It will afterwards be • seen (art. 7) that the declination-range depends amongst other things on the relative position of the sun and moon, and hence to eliminate this inequality I have resorted to monthly means.

TABLE I.—Containing Monthly Means (48 to the year) of the Diurnal Declination-ranges, thus :—January (0) gives the Monthly Mean of which the Middle Date is the very commencement of the Year, January (1) that for one Week after the commencement, and so on.

Date.	1858-61.	1862-65.	1866-9.	18703	Mean.
Jan. (0)	·325	·320	·249	•352	·312
, (1)	·334	·329	·265	·367	·323
", (2)	·344	·348	·279	·389	•340
" (3)	·356	·363	·313	·414	·362
Feb. (0)	·389	·369	•347	·435	·385
" (1)	414	·371	·359	·458	•401
" (2)	·438	$\cdot 379$	·378	·476	·418
" (3)	·479	·389	·388	·496	•438
Mar. (0)	·512	·418	·395	·545	·467
" (1)	·554	·465	·425	·589	·508
" (2)	•593	·504	·463	·634	·548
,, (3)	·635	•538	·499	·675	•587
April (0)	·664	$\cdot 554$	·537	·704	·615
" (1)	·689	$\cdot 552$	·556	·731	·632
" (2)	·697	·547	·555	·755	·639
,, (3)	·664	·535	·545	·738	·620
May (0)	·641	·526	·516	·713	•599
" (1)	.605	·528	•504	·688	·581
" (2)	·600	•532	·508	$\cdot 652$	·573
" (3)	•619	•549	·516	·657	•586
June (0)	·626	•568	·529	·663	•596
" (1)	·637	·574	•538	•669	•605
,, (2)	•633	·582	·541	•685	·610
" (3)	·614	•581	·539	·683	·604
July (0)	·613	·566	·533	·692	·601
" (1)	·606	·558	•533	-692	•597
,, (2)	•611	·547	·526	·678	·591
" (3)	·612	·537	·528	·692	·593
Aug. (0)	•611	·546	•538	·681	·594
,, (1)	•62 3	·551	·544	·684	•601
" (2)	•635	•558	·550	·700	·611
,, (3)	•631	·562	·544	·686	•60 6
Sept. (0)	·623	·547	·534	·671	•594

1877.]

TABLE I. (continued).

			DITE 71 (000	•••••••••••••••••••••••••••••••••••••••		
Dat	e.	1858-61.	1862-65.	1866-9.	1870-3.	Mean.
Sept.	(1)	·609	$\cdot 540$	·514	·646	·577
,,	(2)	·581	$\cdot 523$	$\cdot 494$	$\cdot 621$	$\cdot 554$
,,	(3)	·559	·493	·481	·595	$\cdot 532$
Oct.	(0)	·537	·483	·458	$\cdot 573$	•513
,,	(1)	$\cdot 522$	•464	•445	$\cdot 552$	·496
,,	(2)	·504	·448	·437	$\cdot 522$	·478
"	(3)	·486	·445	•418	• 5 0 3	•463
Nov.	(0)	$\cdot 465$	$\cdot 427$	·408	·480	·445
"	(1)	·420	·402	$\cdot 389$	$\cdot 462$	·418
,,	(2)	$\cdot 389$	·376	•361	·430	•389
"	(3)	·363	$\cdot 354$	•333	•390	·360
Dec.	(0)	·341	·337	•309	$\cdot 371$	·340
,,	(1)	•341	·321	$\cdot 279$	$\cdot 345$	$\cdot 322$
,,	(2)	·323	$\cdot 311$	$\cdot 259$	·339	·308
,,	(3)	·325	·305	$\cdot 254$	$\cdot 349$	·3 08

,, (3) ·325 ·305 ·254 ·349 ·308 3. It will be seen from Table I. that while there is a maximum of declination-range in June about the time of the summer solstice, there are also maxima in April and August, and that a behaviour of this kind is indicated in each four years' observations. Comparing this result with that embodying the annual variation of temperature-range at Kew (Proc. Roy. Soc. 1877, vol. xxv. p. 578), it will be seen that the latter variation has only one maximum in July. Perhaps there is a reference to the equinoxes as well as to the solstices in the annual variation of the declination-range. A comparison of the two is exhibited in Figs. IX., X., p. 120 (Fig. IX. giving declination- and Fig. X. temperature-ranges).

B. Variations of Long Period.

4. It is well known that the range of the magnetic declination has a long-period variation, apparently connected with the physical state of the In order to investigate the nature and closeness of this sun's surface. connexion the following plan has been adopted :- Let us assume as the most probable hypothesis that the cause which exalts or depresses the mean annual declination-range exalts or depresses also in a similar manner the variations of this from one month to another. This is what would take place if we could imagine the effect to be produced by some influence emanating from the sun, which acted more powerfully on some years than on others, while the variations of this effect due to the sun's position in the ecliptic were also altered in the same proportion. On the whole this is borne out by Table I. Constructing, now, a Table for each year, and for 48 points in each year, and reckoning the mean of the 16 years' ranges for each of these points (as exhibited in the last column of Table I.) equal to 1000, we find in Table II. a series of values exhibiting the proportion between the observed range for any point of any one year,

and the mean of the whole 16 years for the same point. For instance, the monthly value corresponding to Feb. (0) 1866 is $\cdot 3535$, while the normal value for the whole 16 years for this point is (by Table I.) $\cdot 385$, and hence the proportional value of the range for Feb. (0) 1866 is $1000 \times \frac{\cdot 3535}{\cdot 385} = 918$. By these means it is believed that the results of Table II. are freed from any recognized inequality, depending either on the month of the year or on the relative position of the sun and moon.

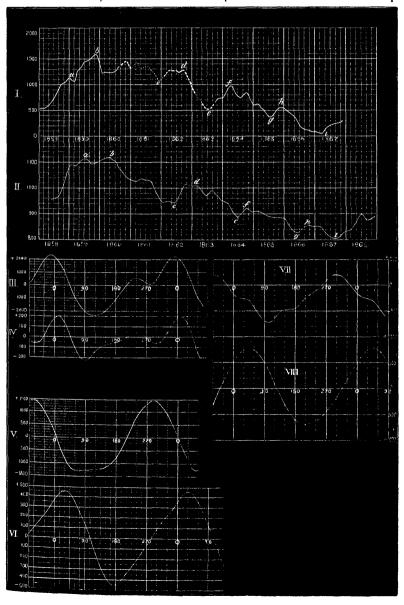


TABLE IL-Exhibiting Monthly Means of Declination-range (48 points to each year), the Mean Value of the Range

106

			for		the whole	Series	for ea	ch poi	nt bein	for each point being reckoned = 1000	= pəuo	= 1000		•	•		
		1858.	1859.	1860.	1861.	1862.	1863.	1864.	1865.	1866.	1867.	1868.	1869.	1870.	1871.	1872.	1873.
January	(o)	1	0201	1140	970	1015	1127	979	166	887	126	709	676	913	1135	1155	1217
:	(I)	i	1018	1132	944	977	1120	1001	985	920	923	764	683	972	1142	1238	1203
:	(2)	913	986	1134	1017	956	1146	980	1101	925	852	793	710	9001	1089	1270	1212
:	(3)	924	1007	101	I 002	960	1143	903	1014	942	870	830	818	IOI	1094	1280	1193
February	(o)	996	1006	Io44	1028	942	1048	921	923	918	871	188	931	1601	1059	1249	1122
:	(1)	ICOI	1001	1016	1053	935	1031	832	606	106	866	830	166	1143	1080	1203	1147
:	(2)	0101	1108	1037	1032	873	1003	805	948	888	882	836	1017	1154	1159	1149	1098
	(3)	1034	1139	1140	1065	848	966	844	892	873	873	844	954	1156	1169	1 094	6011
March	(o)	1022	1147	1172	1040	825	928	876	949	816	\$36	813	915	1911	1256	1099	1145
	(I)	1025	1149	1175	1013	830	948	943	936	793	817	845	891	1167	1256	goii	1103
:	(2)	1025	1911	1168	968	885	949	946	897	781	827	852	915	1173	1219	1104	1129
:	(3)	988	1185	1147	I I O I	206	936	924	898	806	167	867	938	1138	1216	1145	1102
April	(o)	952	1228	1084	1059	881	972	876	879	847	765	932	946	1143	1198	1114	1126
	(I)	940	1253	1090	1081	870	980	821	821	876	770	933	938	1162	1221	1109	1135
*	(2)	910	1259	1057	1138	855	958	801	810	841	752	957	930	1197	1284	1123	1128
:	(3)	889	1223	1056	1112	830	974	830	814	821	797	936	960	1230	1285	1134	0111
May	(o)	896	1180	1011	1102	869	983	836	825	167	779	906	696	1262	1279	1175	1047
:	(1)	836	1135	1124	1068	869	1003	869	892	787	167	895	993	1261	1290	1178	6001
:	(2)	880	1001	1150	1063	906	1024	900	887	862	264	847	1046	1256	1186	1124	986
:	(3)	848	1113	0611	1052	951	1022	894	886	843	767	850	1064	1222	1211	2601	959
June	(o)	886	1089	1184	1041	972	1024	617	894	875	773	844	1055	0811	1225	1096	947
:	(1)	902	1051	1189	1072	994	592	933	880	847	770	872	1072	171	1187	1115	954
*	(2)	845	1078	1180	1047	1030	972	916	\$95	812	786	868	1081	1190	1221	1153	926
"	(3)	858	1053	1113	1040	1014	987	948	898	816	799	883	1073	1231	1209	1168	116
	~			•	-	-		-	(-	_	-	_	2	-		

1877.]

1.000

948	947	066	1026	994	1001	977	998	1007	1004	1021	1002	985	974	926	903	206	902	903	865	885	871	874	
1177	1168	1144	1156	1131	1088	IIII	1075	1041	1071	1001	1098	7111	1073	0201	1036	1047	1099	1109	1150	7111	1115	1149	1140
9611	1203	1194	1203	1209	1258	1268	1239	1244	1163	1118	1137	1143	1180	1205	1174	1137	1125	1137	1117	1172	1236	1263	1299
1282	1318	1266	1286	1254	1206	1228	1218	1230	1236	1277	1237	1225	1228	1170	1233	1220	1294	1277	1204	1195	1069	1124	1164
1071	1095	1085	1093	0601	1064	1024	1025	1057	0901	1071	1067	1035	1014	1029	1004	1036	1058	997	9101	986	929	946	179
880	849	870	881	919	179	956	929	908	870	894	929	918	948	179	927	918	915	885	906	908	813	745	684
817	815	810	798	812	838	852	867	853	824	808	80I	788	795	820	813	822	811	827	795	167	777	727	749
780	810	796	794	8o3	751	770	774	778	805	789	819	834	835	839	866	890	934	0001	981	955	948	946	899
866	856	843	828	850	874	872	904	903	915	947	948	984	960	936	934	905	907	606	900	881	860	850	821
931	920	928	884	891	888	883	892	870	877	864	839	871	885	916	928	920	890	868	872	937	976	0001	1040
965	947	954	938	951	926	912	914	930	952	974	196	951	963	946	IOOI	1018	1021	1052	1076	1095	1120	1147	1081
1007	910I	186	982	983	983	985	998	985	ICOI	985	959	960	937	953	984	966	1026	1038	1081	1057	1041	1039	9101
1027	910I	994	1004	1008	IIOI	1050	1062	1072	1081	1040	186	954	938	925	944	967	934	1002	1039	1042	1082	1057	1008
1079	1059	1122	1141	1168	1164	1115	IOII	1048	1031	1027	1005	107 4	1072	0201	1085	1046	0001	988	963	922	666	938	996
1083	1071	1042	1037	2001	1058	1104	1084	8111	1129	6011	1148	1108	2011	0011	1072	1094	0901	1007	1094	0601	1147	1187	1185
892	116	982	949	930	616	891	922	956	980	1014	1069	1052	1097	1124	1096	1074	1025	1003	939	996	1018	0101	1054
(o)	(I)	(2)	(3)	(o)	(1)	(2)	(3)	(0)	(I)	(2)	(3)	(o)	(1)				(I)	(2)	(3)	(o)	(I)	(2)	(3)
July		ŝ		August	:	ĩ	ŝ	September (*	"	£	October	"	"	£	November		£		December		"	ĩ

5. The numbers of Table II. require to be further dealt with before they can be made to furnish a curve, bringing out the long-period variation of the declination-range. Let us first take for this purpose, as well as for other objects to be afterwards mentioned, a series of values derived from the numbers of Table II., each representing the mean of 12 consecutive values of Table II. These may be termed three-monthly values. Thus, for instance, we have as follows :---

Date, 1858.	Monthly Values for Table II.	Three-Monthly Values.
Feb. (3)	1034	
Mar. (0)	1022	$ \begin{array}{c} 983 \\ 983 \end{array} \right\} \dots 983 $
" (1)	1025	
" (2)	1025	$\left.\begin{array}{c}980\\974\end{array}\right\}\ldots 977$
" (3)	988	
Apr. (0)	952 ····	$\left. \begin{array}{c} 961 \\ 950 \end{array} \right\} \ . \ \ 955$
" (1)	940	950 J

We have thus, in the last column of Table III., a series of threemonthly values corresponding to the beginning and middle points of each month. In the next place, by adding together a certain three of these values, we may obtain nine-monthly values. Thus the three-monthly value for March (0), as above, is 983, while that for June (0) is 885, and for Sept. (0) 986; the mean of these (being 951) is the nine-monthly value corresponding to June (0). Nine-monthly values have thus been obtained corresponding to the beginnings of each month; and finally, by adding these together, two and two, a series of nine-monthly values have been obtained corresponding to the middle points of each month. These are given in Table IV., and a curve exhibiting them is likewise given in Fig. II. attached to this paper. Again, the numbers given by Messrs. De La Rue, Stewart, and Loewy in their paper on "Solar Physics" (Phil. Trans. 1870, page 111), exhibiting the spotted area of the sun's visible hemisphere for the years for which we have Kew declination results, have been treated in a manner precisely similar to the above; that is to say, nine-monthly values corresponding to the middle of each month have been obtained. These values are given in Table V., and a curve exhibiting them is likewise given in Fig. I. (p. 105).

	1858.	1859.	1860.	1861.	1862.	1863.	1864.	1865.	1866.	1867.	1868.
Jan. (2)		1082	1109	1030	945	1008	945	909	879	851	832
Feb. (2) Mar. (2)	•••	1090 1088	1113 1116	1029 1026	942 947	1009 1006	942 934	910 907	867 850	850 844	837 846
April (2)		1094	1117	1030	947	996	916	902	837	832	859
May (2)	•••	1105	1109	1036	941	983	895	898	829	820	876
June (2) July (2)	957 960	1112 1112	1104	1032 1029	942 956	971 976	887 890	894 890	826 832	811 804	891 898
Aug. (2)	962	1107	1075	1027	979	988	900	889	844	799	887
Sept. (2) Oct. (2)	975	1095	1063	1016	1002	986	914	888 888	851	801 807	874 878
Oct. (2) Nov. (2)	997 1030	1092 1097	1050 1040	995 975	1013 1010	974 962	921 918	888	854 852	816	885
Dec. (2)	1061	1102	1034	960	1007	952	911	884	851	827	5

TABLE IV.—Declination-range, Nine-monthly Values.

TABLE V.-Spotted Areas, Nine-monthly Values.

	1858.	1859.	1860.	1861.	1862.	1863.	1864.	1865.	1866.	1867.
Jan. (2) Feb. (2) Mar. (2) April (2) June (2) July (2) Aug. (2) Sept. (2) Oct. (2) Nov. (2) Dec. (2)	504 530 538 595 654 706 778 871 983 1030 1051 1100	1122 1086 1107 1241 1316 1361 1446 1462 1485 1532 1563 1500	1311 1220 1246 1240 1244 1254 1292 1357 1370 1402 1437 1378	1343 1400 1426 1359 1313 1333 1352 1316 1265 1236 1150 1077	1112 1173 1249 1266 1268 1285 1249 1271 1294 1231 1133 1005	913 829 745 698 623 560 515 528 606 671 710 715	770 868 943 982 904 803 766 766 823 830 736 643	598 605 574 510 474 415 366 398 461 513 535 537	522 482 438 410 361 283 198 144 120 100 85 78	72 65 55 86 153 194 211 234 251 262 305

6. If we compare together Figs. I. and II. (p. 105), it will be seen that there are a good many points in the one curve which we are fairly entitled to identify with corresponding points in the other; of these, b and i represent the respective maximum and minimum points. There is, however, a fluctuation between d and e on the declination-curve that has no corresponding fluctuation on the sun-spot curve; while, on the other hand, there are a series of small fluctuations on the sun-spot curve between b and c which have no distinct analogues on the declination-curve. It will, however, be seen that both of these discordant regions are represented by dotted lines on the sun-spot curve; that is to say, they represent results derived either wholly or in part from Schwabe's eye-observations while the Kew photo-heliograph was not in action.

Again, it will be remarked that each of the corresponding points occurs later in point of time in the declination than in the sun-spot curve. Thus we have :---

	Date in Solar curve.	Date in Declination- curve.	Difference, in Months.
a.	Jan. 15, 1859	July 15, 1859	6
b.	Nov. 15, 1859	Apr. 15, 1860	5
с.	Dec. 15, 1861	June 0, 1862	5½ doubtful.
d.	Sept. 15, 1862	Mar. 0, 1863	$5\frac{1}{2}$
e.	Aug. 0, 1863	June 15, 1864	$10\frac{1}{2}$ doubtful.
f.	Apr. 15, 1864	Oct. 15, 1864	6
<i>g</i> .	July 15, 1865	June 0, 1866	$10\frac{1}{2}$
h.	Dec. 15, 1865	Oct. 15, 1866	10
i.	Mar. 15, 1867	Aug. 15, 1867	5

I shall return again to this subject at a future part of this paper.

C. Lunar Annual Variation.

7. For the purpose of discovering this variation the whole period of observation has been portioned out into lunations, beginning with new moon. Each lunation is divided into eight parts, entitled (0), (1), (2), (3), (4), (5), (6), (7); (0) denoting new, and (4) full moon.

These various lunations thus divided, with the corresponding values of the declination-range, are exhibited in Table VI., the values of which have been obtained by a method of treatment precisely similar to that adopted for the Kew temperature-ranges, and described in a previous paper (Proc. Roy. Soc. 1877, vol. xxv. p. 581).

TABLE VI.—Exhibiting the Declination-ranges grouped according to Lunations.

Run- ning No.	Lunation commencing new moon.	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
1.	Jan. 15, 1858.	•287	.322	.296	.261	317	.437	.417	•387
2.	Feb. 13, "	.504	.470	.383	.383	473	.557	.519	.504
3.	Mar. 15, ,,	.565	.609	.201	.231	.520	.622	·628	.529
4.	Apr. 13, "	.528	•606	.636	.552	.542	•465	.520	.210
5. 6.	May 13, "	•488	'412	•446	.261	•578	.544	•542	.487
6.	June 11, "	.561	•546	.536	'439	'426	•558	.263	.536
7.	July 10, "	.572	•616	539	•568	·617	.612	534	•462
8.	Aug. 9, "	.537	.570	.556	·541	·552	.582	575	.200
9۰	Sept. 7, "	.526	.633	.595	.231	·486	537	.613	.602
10.	Oct. 7, "	.206	·499	*508	.539	.580	.524	.522	.480
ΙΙ.	Nov. 5, "	.412	.362	417	.404	337	.382	375	.276
12.	Dec. 5, ,,	.220	.289	.367	.367	.321	374	.319	.286
13.	Jan. 4, 1859.	.289	•348	•364	.366	•387	*294	.293	•368
14.	Feb. 3, ,,	•387	482	'47I	.426	479	.200	493	.211
15.	Mar. 4, "	·555	.269	.624	•645	·664	.704	•676	.742
16.	Apr. 3, ,,	.742	•746	.867	·914	894	.819	.766	.211
17.	May 2, ,,	.603	.613	.621	655	.670	.640	.570	.622
18.	June I, "	.736	.710	.667	.625	.607	.576	•647	•694
19.	June 30, "	.740	·662	•561	•656	.681	.537	•537	.599
20.	July 29, ,,	·646	·68 5	•599	•586	•638	.652	.697	.739
21.	Aug. 28, "	753	•616	547	·652	•646	.670	·631	.611

Range of Magnetic Declination.

TABLE VI. (continued).

Run- ning No.	Lunation commencing new moon.	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
22.	Sept. 26, 1859.	•603	.621	558	.20	472	.203	•548	:532
23.	Oct. 26, "	•549	475	.413	·451	.464	·433	·392	370
24.	Nov. 24, "	•340	.335	.388	·412	.386	•378	.345	•366
25.	Dec. 24, "	.317	317	·402	·450	.365	.315	*347	.398
26.	Jan. 23, 1860.	.442	.403	359	•342	.382	•467	'435	445
27.	Feb. 21, "	458	·461	.533	.590	.633	.709	·662	•594
28.	Mar. 22, ,,	.662	.661	.617	.720	.720	•643	.719	.716
29.	Apr. 21, ,,	•684	.625	.598	597	.677	.660	639	•688
30.	May 20, ,,	•687	.663	·624	•659	.788	·822	.690	•686
31.	Tumo	.738	·684	629	573	.634	.652	.594	.546
32.	Tul0 "	.617	.760	.772	.786	.738	.677	.613	·648
	Ann of	.700	.701	.668	.700	.697	.614	492	•486
33.			.568	·620		.521	:470	192	
34.	Sept. 15, "	.504		1	573				:539
35.	Oct. 14, "	•586	:527	:483	.522	.209	:460	:446	·419
36.	Nov. 13, "	·400	.367	.319	323	.380	359	272	293
37.	Dec. 12, "	•274	.303	353	.318	*244	243	.321	295
38.	Jan. 11, 1861.	.300	·297	.361	.392	417	:390	395	:362
39.	Feb. 9, "	' 417	.418	.466	.211	•448	•452	.518	.211
40.	Mar. 11, "	·524	.211	•576	•468	.482	670	.760	.481
41.	Apr. 10, "	.765	.703	.712	.709	.714	•683	•627	•639
42.	May 9, "	.638	.596	.557	·551	.586	.622	.632	.659
43.	June 8, ,,	.655	.634	·638	.668	.690	.584	.565	.617
44.	July 8, "	.637	.597	.563	.621	.604	.555	.559	.593
45.	Ann 6	·684	.631	.565	.624	·671	.718	.644	.615
46.	Sont 4	.653	.628	.569	.601	.599	.538	.449	.392
47.		·436	.450	425	·478	.526	•466	394	1.388
48.			430		.406	.405	374	-386	347
	Dec . "	374		:439			3/4	281	288
4 9·	D	354	·371	343	.318	.330			
50,		335	302	252	374	345	.308	.328	.319
51,	Jan. 30, 1862.	•358	•370	·394	·408	374	374	343	275
52,	Feb. 28, ,,	.314	'412	·478	'473	•484	.512	.200	525
53.	Mar. 30, "	*553	.588	.539	.480	577	•548	.201	·484
54.	Apr. 28, ,,	·552	·498	.211	.522	.233	·497	477	553
55.	May 28, ,,	•579	·626	•622	.587	·631	.283	.568	.629
56.	June 27, "	·692	•637	.562	.558	•578	•635	.610	.537
57.	July 26, ,,	.576	1582	.557	.567	.558	.623	.623	·6c4
58.	Aug. 25, "	·646	.635	·588	.582	.522	.527	.519	·570
59.	Sept. 23, "	.578	.522	.450	•442	.407	•446	.492	.448
60.	Oct. 23, "	.445	.483	·460	.414	•448	.394	.395	422
61.	Nor - Ji ii	·390	.383	377	.382	.370	297	292	273
62.	Dec. 21, "			314	.300	.388	·438	.429	.404
63.	Jan. 19, 1863.	•305	·337			.423		·400	345
6 <u>4</u> .	Feb -9	347		.413	434		454		
65.		.385	:430	:443	.446	453	459	·445	497
66.	Ann 20 "	•566	·6co	•589	•608	•580	.552	.625	•654
	Apr. 18, "	.678	.630	.573	•547	.21	.580	.286	.615
67.	May 17, "	.663	.621	.615	*572	•606	.281	•566	•629
68.	June 16, ,,	•634	.262.	•538	.575	•599	.610	.612	• 573
69.	July 15, "	·549	.533	·492	.221	•590	•577	.584	•590
70.	Aug. 14, ,,	.580	.454	474	.538	.578	• 56 1	.569	•581
71.	Sept. 13, "	.590	.538	.502	.515	497	•487	.448	.451
72.	Oct. 12, .,	·497	.469	•467	•480	.418	.455	·478	457
73.	Nov. 11, "	.443	411	376	.340	.321	355	.418	.430
74.	Dec. 10, "	422	.340	314	-341	1298	327	.319	-317
75.	Jan. 9, 1864.	2.65	278	374	1280	.332	358	323	.300
76.	TT			374 ·382	297	293	·360	·406	
77.	Man 9 "	325	.371						427
	mar. 0, "	·528	•550	-534	•576	•589	.516	.477	516

Prof. B. Stewart on the Daily

[Mar. 22,

TABLE VI. (continued).

Run-	Lunation	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
ning No.	commencing new moon.	(0)		(2)	(0)	(1)		(0)	
78.	Apr. 6, 1864.	•587	.557	.500	•468	.518	·478	.507	.536
79.	May 6, "	.523	.491	•469	479	·5°4	•548	•520	.571
80.	June 4, "	.572	.598	.563	\$557	.584	556	·505	.540
81.	July 4, "	.628	.583	.523	.510	.553	.522	•486	•494
82.	Aug. 2, "	·497	.544	.526	.567	.600	•548	.520	.546
83.	Sept. 1, ,,	.531	542	.471	433	.452	.519	·456	.40
84.	Sept. 30, "	.439	406	436	422	443	483	·490	.44
85.	Oct. 30, "	.403	.369	.346	•368	.385	·370	296	27
8 6 .	Nov. 29, "	269	286	.311	•341	.366	.315	.325	.300
87.	Dec. 28, "	247	.212	.329	387	•326	.303	*357	33
88.	Jan. 27, 1865.	•364	.348	.384	424	'314	•358	.390	'42
89.	Feb. 25, ,,	484	470	.400	·408	.213	·531	.212	·55¢
90.	Mar. 27, ,,	559	.533	•531	•564	.261	•476	' 414	'48
<u>9</u> 1.	Apr. 25, "	.563	.556	.509	.442	.523	.539	•526	.21
92.	May 24, "	.512	'493	·492	535	.559	•588	•565	·499
93.	June 23, "	.543	.552	.539	.514	·479	·495	*4 78	·489
94.	July 22, "	.530	504	'492	473	.542	.553	•539	.567
95.	Aug. 21, "	.568	.209	.529	.502	557	•548	•500	.520
96.	Sept. 19, "	•528	.513	.516	·480	.463	·486	•496	'454
97.	Oct. 19, "	.423	.443	•409	•387	•376	440	*393	356
98.	Nov. 18, "	.303	•346	.310	295	.302	285	*277	224
99.	Dec. 18, "	230	'244	•243	274	•263	² 34	.317	376
100.	Jan. 16, 1866.	*329	.308	.312	*332	•313	333	•378	.426
101.	Feb. 15, "	*399	•346	'349	*372	359	.399	•47 I	'410
102.	Mar. 16, "	395	.412	•460	·450	•528	.580	·579	.614
103.	Apr. 15, "	•638	.569	•490	•396	·437	•498	·382	'43
104.	May 14, "	•516	.538	.207	.211	.212	474	·482	.547
105.	June 12, "	•606	.560	455	.442	.202	.463	·429	'434
106.	July 12, ,,	•498	543	.219	477	'445	'444	·438	·488
107.	Aug. 10, "	.203	473	427	449	'489	479	·480	'452
108.	Sept. 9, "	' 477	453	·440	·402	.428	'416	372	'447
109.	Oct. 8, "	·472	.460	'445	.362	334	332	353	.442
110.	Nov. 7, "	.448	427	'389	349	•296	'309	.388	314
111.	Dec. 7, "	•296	.302	·324	.319	219	233	·289	217
112.	Jan. 6, 1867.	.309	349	358	*343	288	*238	'241	294
113.	Feb. 4, ,,	•346	'419	.442	395	356	.311	·358	397
114.	Mar. 6, "	'400	477	.200	443	'44 7	·466	•4 ⁸ 7	'496
115.	Apr. 4, "	·446	395	.483	534	547	'477	.472	.21
116.	May 4, "	.203	.429	.382	.400	.514	443	•384	.203
117.	June 2, "	.208	•468	•396	•469	.21	•507	•509	.46
118.	July 1, "	.208	.512	'430	473	.481	.200	·455	45
119.	July 31, "	•504	•486	·470	.219	•547	.283	.220	.528
120.	Aug. 29, "	543	·493	.484	'431	453	.485	.420	.401
121.	Sept. 27, ,,	424	'431	.382	.348	339	·418	·426	.410
122.	Oct. 27, ,,	·408	349	341	298	.309	.361	.304	314
123.	Nov. 26, "	.358	'247	[.515]	['237]	233	·208	-237	.552
124.	Dec. 26, "	.224	*245	.531	2.42	['254]	[.266]	.277	32
125.	Jan. 24, 1868.	.361	.319	.503	.369	•376	.348	.318	.336
126.	Feb. 23, "	.426	.391	·392	421	'419	398	.464	.201
127.	Mar. 24, ,,	•556	.238	.545	.288	.640	•646	·626	.220
128.	Apr. 22, "	•580	.636	.557	•487	.202	·507	•489	.47
129.	May 22, ,,	495	.524	.468	·450	°553	.236	•516	·55 ·48
130.	June 20, ,,	.263	.212	.209	.512	*539	•508	·497	
131.	July 19, "	493	•548	.516	.532	.573	•594	•584	.610
132.	Aug. 18, "	.671	.603	•548	.211	.480	.212	.230	.488
133.	Sept. 16, "	452	.480	*533	.504	.463	·493	.442	.384

Range of Magnetic Declination.

113

TABLE	VI.	(continued).
-------	-----	--------------

Run-	Lunation								
ning	commencing	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
No.	new moon.			. ,		• •			
134.	Oct. 15, 1868.	•437	·498	. 474	'491	.391	353	•384	.310
135.	Nov. 14, "	·295	.321	384	*353	•253	2.39	-258	•276
136.	Dec. 14, "	-240	.513	.189	-205	•200	.191	·197	*275
137.	Jan. 12, 1869.	*258	212	•239	215	-283	327	417	·492
138.	Feb. 11, "	•501	'417	.400	·412	'399	351	.419	.221
139.	Mar. 13, "	.527	•467	·476	•586	•586	•560	.578	.611
140.	Apr. 12, "	•666	.291	.538	:530	582	.609	:584	·616
141.	May 11, "	.623	•588	.521	.209	·624	•689	·682	•711
142.	June 10, "	.602	.261	.601	.653	.704	.713	·684 ·661	·655 ·668
143.	July 9, "	.612	:593	.619	•643	·690	·679	1	·668
144.	Aug. 7, "	•656	.601	·591	•619	•646	635	:593	
145.	Sept. 6, "	•667	•640	.622	.265	:550	-565	.496	·529
146.	Oct. 5, "	575	.522	477	.436	'441	·504 ·378	·496 ·304	*475 *258
147.	Nov. 3, "	:439	:443	.475	·392 ·311	·359 ·234	·218	245	·290
148.	Dec. 3, ,, Jan. 2, 1870.	·320	·367 ·316	339	269	·284	345	-380	·374
149. 150.	The second second	344		*294 *518	·488	-461	345	483	3/4 *453
150.	3.6	·414 ·535	*475 *592	.644	•649	.651	.709	.690	·659
152.	A	742	.704	.811	.775	.741	.811	.790	.786
153.	1	.745	•665	.714	753	.761	.702	.692	.738
154.	M	732	.692	.619	.643	.759	.806	.715	751
155.	Tunna 0	.840	.742	.709	•826	.823	.852	1790	.695
156.	T1	.659	.696	.776	.745	.722	.799	.719	.681
157.	A	.739	.766	.750	.713	.720	.729	.637	·652
158.	Sept. 25, ,,	.721	.704	.614	.547	.570	.589	·601	.562
1 59.	Oct. 24, "	.470	.586	·611	.571	.509	.528	.590	.559
160.	Nov. 23, "	.418	375	•325	.335	.343	.390	.363	.312
161.	Dec. 22, "	.339	.335	.373	.361	.367	.360	.372	.357
162.	Jan. 21, 1871.	.372	.359	-373 -378	•461	·471	.442	419	495
163.	Feb. 19, "	.489	.557	.582	.582	.603	.682	.735	.712
164.	Mar. 21, ,,	·679	·68o	.673	·690	.815	.823	.797	.758
165.	Apr. 19, "	.819	.852	•887	·814	·671	.629	·650	.779
166.	May 19, "	.747	.600	.283	.717	.793	1855	773	.750
167.	June 18, "	·699	•635	.716	.751	.762	.673	.677	•738
168.	July 17, "	•748	.634	.589	.704	•767	•761	.722	737
169.	Aug. 16, "	•841	·829	.797	.748	.702	•684	.713	•663
170.	Sept. 14, ,,	•679	•678	'495	.476	•583	.626	•638	.625
171.	Oct. 14, "	.625	.612	*559	•489	.204	.215	·449	'421
172.	Nov. 12, "	•478	·493	·432	.419	.396	333	.359	'434
173.	Dec. 12, "	.445	.449	.422	•396	.318	•364	.328	.412
174.	Jan. 10, 1872.	·392	·431	478	475	496	:504	484	.478
175.	Feb. 9, "	482	.508	·484	•446	478	:474	467	•501
176.	Mar. 9, " Apr. 8, "	•584	.628	.628	.671	.664	.632	.728	'74I
177. 178.		733	.704	•668	.724	·763 ·611	732	.625	·678 ·610
	May 7, "	.719	•679	.671	•604		.621	.590	
179. 180.	June 6, "	.723	753	.671	·692	759	·704 ·608	·671 ·588	·678
181.	July 5, "	679	.744	735	·731 ·615	·684	.621		•649 •686
182.	Aug. 4, " Sept. 3.	.728	·729 ·609	·684	.560	·646 ·608	.600	·639 ·572	·561
183.	0.4	.629	.608	•568	466	428		.483	.489
184.	Now -	·591	1	·524	.440		455	-391	
185.	Nor	`507 '411	·459 ·405	459	302	.432 .329	'432 '349	-365	·393 ·347
186.	Dec co			338		329	349	-386	
187.	Jan. 28, 1873.	355	·413 ·467	·376	·377 ·413	419	.446	.494	*459 *456
188.	Fab	447		476	1580	·597	.583	1623	'456 '712
189.	Mar. 28, "	·520 ·706	·571 ·658	·532 ·693	795	·791	·694	.710	.729
		,	50	~73	/ 33	13.	- 74	,	,,
			1	·				1	

VOL. XXVI.

Run- ning No.	Lunation commencing new moon.	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
190.	Apr. 26, 1873.	^{•733}	·599	·568	·547	·548	·575	·516	·559
191.	May 26, ,,	•627	·616	·560	·519	·547	·568	·593	·585
192.	June 24, ,,	•567	·556	·529	·530	·625	·628	·524	·561
193.	July 24, ,,	•649	·651	·566	·622	·612	·575	·575	·602
194.	Aug. 23, ,,	•599	·614	·627	·608	·606	·578	·539	·520
195.	Sept. 21, ,,	•570	·578	·534	·513	·477	·478	·424	·393
196.	Oct. 21, ,,	•465	·417	·411	·411	·383	·336	·385	·349
197.	Nov. 20, ,,	•315	·375	·323	·236	·223	[·243]	[·263]	·282

TABLE VI. (continued).

8. Making use of the whole series of lunations of Table VI. we obtain the following results :---

Phase of lunation	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Value of range	•519	.212	' 499	. 499	•507	•508	'499	.203	(A)

a series which presents the appearance of a double period with maxima about new and full moon. A similar result has been obtained for Lisbon by Senhor Capello, Director of the observatory there ('Annals of the Observatory,' 1876), who finds that the declination-ranges, or rather the differences of the declination at 8 A.M. and at 2 P.M., obey a law similar to that stated above.

It may likewise be remarked (as was done in the corresponding discussion of temperate-ranges) that the sum of the four left-hand numbers is larger than that of the four right-hand numbers—the former being 2.029, while the latter is 2.017.

D. Semiannual Lunar Variation.

9. If we now make use of the lunations corresponding to the six months of which the middle point is the winter solstice, employing for this purpose lunations 1-2, 9-15, 22-27, 34-39, 47-52, 59-64, 71-76, 84-89, 96-101, 108-114, 121-126, 133-138, 146-151, 158-163, 170-175, 183-188, 195-197 (in all 97 lunations) we obtain the following result:—

Phase of lunation									
Value of winter }	•415	' 420	' 415	·408	•401	'409	' 413	412	(B)

But before making use of these numbers we must apply to them a small correction. For it is possible that the sum of the various newmoon observations for any six winter months, inasmuch as they occur at dates preceding those of the corresponding full-moon observations, or observations for other phases, may be affected differently from the latter by the annual variation indicated in Table J. A correction on this account 1877.]

has therefore been obtained from Table I., and when applied to (B) we obtain the following result:--

Phase of lunation ... (0)(1)(2)(3 (4) (5)(6) (7)Corrected value of) •416 ·417 '422 .402 ·408 (C) .409 .409 **'411** winter range } Series (C) is represented in Fig. XI. (p. 120).

10. If we now make use of the observations corresponding to the six months grouped around the summer solstice (100 in all), we obtain the following results :--

Phase of lunation	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Value of summer }	621	.601	•580	•587	•610	·604	.582	•591	(D)

and if we apply to this a residual correction analogous to that applied to (B), we obtain as follows:—

Phase of lunation									
Corrected value of summer range. }	.620	•600	578	•586	•609	·604	·\$84	•596	(E)

In series (E) we have well-marked maxima corresponding to new and to full moon.

E. Variations which seem to depend on Planetary Configurations.

11. From art. 6 we may conclude that the connexion between solar spotted areas and declination-ranges is an intimate one. Now Messrs. De La Rue, Stewart, and Loewy, in a paper already quoted (Phil. Trans. 1870), have shown that the amount of spotted area of the sun's surface exhibits a reference to the chief planetary configurations. It becomes, therefore, a question of interest to ask whether declination-ranges exhibit a reference of the same kind*.

In order to reply to this I have selected those configurations which occur most frequently, and which might therefore be supposed to be sufficiently well indicated by sixteen years' observations.

These are, (a) the period of conjunction of Venus and Mercury, (β) the solar period of Mercury, (γ) the period of conjunction of Venus and Jupiter.

In the next place, three-monthly values for every week have been constructed after the manner indicated in Table III. Now inasmuch as the periods of the three configurations already alluded to are not very far different from three months, we may imagine that these three-monthly values are to a great extent free from any inequality depending on these periods. The differences between the monthly and the three-monthly values will, however, exhibit any such inequality as may exist. These

^{*} Mr. C. Chambers, of the Bombay Observatory, has discussed the question as to whether certain other magnetic elements have a reference of this kind (Phil. Trans. 1875, p. 361).

[Mar. 22,

differences, slightly equalized, are therefore made to form the ordinates of a curve of which the time is the abscissa, and we may expect to derive from such a curve materials for determining whether there be any inequality in the declination-range due to such configurations. The method employed in plotting this curve will be understood from the following example :---

TABLE V	VII.
---------	------

Date, 1858.	Monthly value.	Three- monthly value.	Difference.	Final equalized difference, plotted in the curve.
Feb. (3)	1034			
Mar. (0)	1022	983	$\dots + 45$	+43
" (1)	1025	983	$\dots +40$	+42
		980	+45	
" (2)	••	974	+32	+ 38
,, (3)	988	961	+ 9	+21
April (0)	952			+ 2
" (1)	940	950	– 4	

12. With regard to the first configuration mentioned (the period of conjunction of Venus and Mercury), these observations embrace 39 periods in all; and summing up the ordinates of the curve corresponding to each 30 degrees of angular separation for the various 39 periods, precisely after the manner employed in the paper on Solar Physics already referred to, we obtain the following result:—

TABLE VIII.—Venus and Mercury together (0° denotes conjunction).

	•		~	
Between	ő	and	3 0	+193
,,	30	,,	60	+ 23
,,	60	,,	90	-196
,,	90	,,	120	-207
,,	120	,,	150	- 93
,,	150	"	180	- 59
,,	180	,,	210	- 43
,,	210	,,	240	+ 13
,,	240	,,	270	+ 26
,,	270	,,	300	- 52
"	300	"	330	- 49
,,	330	,,	360	119

In Figs. III. and IV. (p. 105) the sun-spot and the declination-curve for this configuration are exhibited together. It will be noticed that there is a very striking likeness between the two, the declination-curve, however, 1877.]

117

lagging behind the other in point of time, as might be expected from art. 6.

13. Next with regard to the second configuration (the solar period of Mercury), the results are so decided that half the declination observations are sufficient to give a tolerably good value. This will be seen from the following Table :---

TABLE IX.—Period of Mercury about the Sun	(in all	65 sets :
0° denotes Perihelion).		

Between	ů	and	3°0	First half. $+217$	Second half. $+212$	Whole series. $+429$
Derween		anu		•	-	•
,,	30	,,	60	+153	+280	+433
"•	60	,,	90	- 3	+259	+256
,,	90	,	120	-168	+173	+ 5
,,	120	"	150	281	+ 1	-280
,,	150	,,	180	-276	-163	-439
,,	180	,,	210	- 151	-262	-413
,,	210	"	240	- 5	-274	-279
"	240	,,	270	+ 73	-213	-140
• • • •	270	,,	300	+114	-101	+ 13
,,	300	,,	330	+145	+ 13	+158
"	330	· ,,	360	+181	+ 97	+278

In Figs. V. and VI. the supposed inequalities due to this period are compared together for spotted solar area and declination-range. It will be observed that the latter lags visibly behind the former in point of time.

14. Let us, in the last place, consider the period of the conjunction of Jupiter and Mercury. In this case, as in the previous one, the inequality is so well marked that the observations may be split into two series; this will be seen from the following Table :---

 TABLE X.—Period of Conjunction of Mercury and Jupiter (in all 63 sets: 0° denotes conjunction).

	•				•	
Between	õ	and	3 0	First half.	Second half.	Whole series.
Derween	U	ana	ə 0	+198	+435	+633
"	30	,,	60	+236	+523	+759
,,	60	,,	90	+225	+427	+652
"	90	,,	120	+119	+209	+328
"	120	,,	150	- 46	- 73	-119
,,	150	,,	180	-185	- 319	-504
· ,,	180	,,	2 10	-251	-427	-678
,,	210	,,	240	230	- 447	- 677
"	240	,,	270	-157	- 391	- 548
,,	270	,,	300	- 91	-231	-322
"	3 00	,,	330	0	- 10	- 10
C	330	,,	360	+118	+225	+343

In Figs. VII. and VIII. the supposed inequalities due to the above period are compared together for solar spotted area and declination-range. It will be noticed that the latter lags visibly behind the former in point of time.

F. Remarks on the supposed relations between Solar spotted areas, Declination-ranges, and Temperature-ranges.

15. A few remarks on this subject will not be considered unallowable if the object be not so much to introduce a final theory as to suggest a working hypothesis which, while not inconsistent with any well-established fact, may perhaps serve to direct future inquiry.

In the first place, we may conclude, as the result of the comparison of Figs. I. and II., that the connexion between spotted areas and declination-ranges is of an intimate nature, the smaller inequalities of the one being reproduced in the other with modifications.

16. In the next place, it seems almost certain that sun-spots are not the chief cause of magnetic action. Mr. Broun, in a recent paper "On the Decennial Period in the Range and Disturbance of the Diurnal Oscillations of the Magnetic Needle and in Sun-spot area" (Trans. Roy. Soc. Edinb. 1876), has made a remark similar to the above, founding it upon the fact that sun-spots appear only when the magnetic action exceeds a given value.

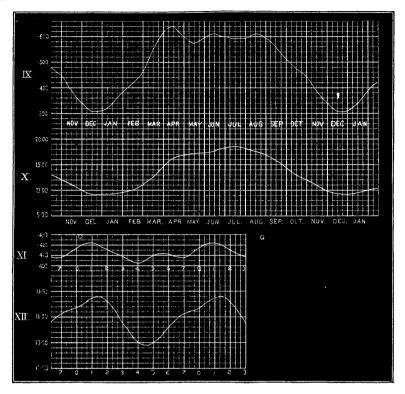
17. Nevertheless it is most probable that magnetic activity is somehow caused by the sun, depending perhaps on the physical state of his surface, while sun-spots give us only a rough mode of estimating this physical state, just as rainfall might in estimating the climate of a place. For it will be seen that the effect of the sun upon magnetic range bears all the appearances of being due to an influence *emanating* from our luminary. For just as the maxima of yearly and daily temperature lag behind the corresponding maxima of solar heat influence, so do the maxima and minima of declination-range lag behind the corresponding maxima and minima in the solar curve, while the same lagging behind appears in the curves, denoting the supposed influence of the planets on the state of the solar surface and (through it?) on the magnetic range.

18. Again, we may probably imagine that sun-spots give us a roughly true indication of solar activity; for if this were not so it would be difficult to account for the striking likeness between the sun-spot planetary curves and the declination-range planetary curves. That the sunspots afford but a rough indication of the physical state of the sun will of course be gathered from the fact that the sun is influential both in meteorology and magnetism when there are no spots; and the same conclusion appears to be supported by the fact that the planetary inequalities appear to be more pronounced when derived from declination-ranges than when derived from sun-spots.

19. There seems, however, to be something more than this; there

appears to be in the march of the declination-range from year to year (Fig. II.) traces of a force which prevents this range from being strictly comparable with that of sun-spots. It will be seen that after the date of peculiarity a (Figs. I. and II.) the sun-spot curve marches rapidly up, while the declination-range curve does not so mount; also, after the maximum b, the sun-spot curve falls more rapidly than the declination-curve. Similar remarks will apply to other points; in fine we have grounds for supposing the declination-range to be acted upon by some other influence than one so represented by sun-spots as to follow their increase and diminution.

Mr. J. A. Broun, in a series of interesting investigations, has indicated the probability that there is an influence of this nature; and it may fairly be said that the results of this paper are at least consistent with such an hypothesis.


20. I would next remark that the hypothesis asserting a connexion of some kind between magnetical and meteorological phenomena appears to be borne out by the results of this paper*.

It will be noticed from Figs. XI., XII. (p. 120), that there is a striking likeness between the winter lunar variation for the declination and temperature ranges. There is also a likeness between the summer lunar variation for these two elements, not so striking to the eye, but which will nevertheless be seen from the following comparison :—

Phase of lunation	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Summer lunar varia- tion temperature- range}	16'96	17.02	17 °23	17'22	17*35	17.15	17'24	17.27
Summer lunar varia- tion declination- range}	·620	•600	578	• 5 86	•609	•604	•584	•596

Both of these, the first imperfectly and the latter fully, exhibit maxima at or near new and full moon. Again, while on the whole there is a likeness between the curves representing the annual variation for these two elements, yet there is also a dissimilarity, inasmuch as the declinationcurve (Fig. IX.) has apparently a strong reference to the equinoxes, which is absent, or nearly so, in the temperature-curve. But it may be taken for granted that if there be a connexion between magnetism and meteorology, it certainly cannot be of such a nature that all the meteorological peculiarities of a place are reproduced in its magnetic phenomena, for all observation is against a connexion of this description. Indeed any hypothesis of a connexion between these two must, in order to be consistent with facts, assume that the magnet averages things so as to be free, in a great measure if not completely, from local peculiarities.

* Mr. Baxendell, of Manchester, was the first to direct attention to this subject in a paper "On a Diurnal Inequality in the Direction and Velocity of the Wind," apparently connected with the daily changes of magnetic declination. See Memoirs of the Lit. and Phil. Society of Manchester, vol. iv. ser. 3, p. 210. The results of this paper appear to be consistent with such an hypothesis when so modified.

21. It is needless here to enter into the various reasons which induce us to believe in the existence of a connexion between the meteorology of the earth and the physical state of the sun's surface. I may, however, refer to a paper "On the Daily Range of Atmospheric Temperature at the Kew Observatory" (Proc. Roy. Soc. 1877, vol. xxv. p. 580), in which it was shown that at Kew the temperature-range is somewhat higher at times of maximum than at times of minimum sun-spots. If, however, we plot as a curve this temperature-range, it is neither like Fig. I. nor Fig. II., or at least not so like as to suggest any marked relation to the eye. (This curve is not given in this paper.) But on examining its most prominent points, I find that not a few of these agree both in direction and in time with similar peculiarities in the magnetic curve. Thus there is a well-marked prominence in the temperature-range curve corresponding to about the end of May 1861; now there is a prominence in the magnetic curve at about the same date. Again, there is a depression in both curves corresponding to about the end of May 1862. Again, there is a well-marked depression in the temperature-curve corresponding to the end of April 1866, while in the